DOI QR코드

DOI QR Code

Spontaneously Adsorbed Mo Layers on Pt(111) and Pt(100) Single Crystal Electrode Surfaces


Abstract

The voltammetric behavior of spontaneously adsorbing Mo layers on Pt(111) and Pt(100) electrodes has been studied to estimate the number of electrons involved in the electrochemical processes of spontaneously adsorbed Mo and the number of the bloc ked Pt sites for hydrogen adsorption. On Pt(111) and Pt(100) surfaces, the spontaneously adsorbed Mo layers showed redox peaks at 0.10 V and 0.15 V, respectively, and continuous current-potential waves in the conventional hydrogen region. Since the potential range of the Mo redox processes on both surfaces overlapped partially with the potential range of hydrogen adsorption, the variation in the ratio of the total charge of Mo and H ($Q_H$ +$Q_{MO}$) to the hydrogen charge of clean Pt electrode ($Q_H^0$) was analyzed. From the analysis, six electrons were estimated to be involved in the electrochemical processes of the spontaneously adsorbed Mo, and four Pt sites for hydrogen adsorption were calculated to be blocked by one adsorbed Mo atom. Based on these figures and the pH dependence of the Mo redox processes, we have proposed an electrochemical equation for the spontaneously adsorbed Mo. This electrochemical equation led us to conclude that the saturation coverage of the spontaneously adsorbed Mo is 0.25. The coverage of Mo less than 0.25, however, could not be determined voltammetrically due to the convolution of the charges of Mo and H.

Keywords

References

  1. Kokkinidis, G. J. Electroanal. Chem. 1986, 201, 217. https://doi.org/10.1016/0022-0728(86)80051-1
  2. Adzic, R. R. In Advances in Electrochemistry and ElectrochemicalEngineering; Gerischer, H., Tobias, C. W., Eds; Wiley: NewYork, 1984; vol. 13.
  3. Conway, B. E. Prog. Surf. Sci. 1984, 16, 1 and references therein. https://doi.org/10.1016/0079-6816(84)90008-X
  4. Janssen, M. M. P.; Moolhuysen, J. Electrochim. Acta 1976, 21,861. https://doi.org/10.1016/0013-4686(76)85058-X
  5. Janssen, M. M. P.; Moolhuysen, J. Electrochim. Acta 1976, 21,869. https://doi.org/10.1016/0013-4686(76)85059-1
  6. Motoo, S.; Shibata, M. J. Electroanal. Chem. 1982, 139, 119. https://doi.org/10.1016/0022-0728(82)85108-5
  7. Shibata, M.; Motoo, S. J. Electroanal. Chem. 1985, 188, 111. https://doi.org/10.1016/S0022-0728(85)80055-3
  8. Parsons, R.; VanderNoot, T. J. Electroanal. Chem. 1988, 257, 9. https://doi.org/10.1016/0022-0728(88)87028-1
  9. Clavilier, J.; Feliu, J. M.; Aldaz, A. J. Electroanal. Chem. 1988,243, 419. https://doi.org/10.1016/0022-0728(88)80045-7
  10. Feliu, J. M.; Fernandez-Vega, A.; Aldaz, A.; Clavilier, J. J. Electroanal.Chem. 1988, 256, 149. https://doi.org/10.1016/0022-0728(88)85014-9
  11. Clavilier, J.; Feliu, J. M.; Fernandez-Vega, A.; Aldaz, A. J. Electroanal.Chem. 1990, 294, 193. https://doi.org/10.1016/0022-0728(90)87145-A
  12. Clavilier, J.; Orts, J. M.; Feliu, J. M.; Aldaz, A. J. Electroanal.Chem. 1990, 293, 197. https://doi.org/10.1016/0022-0728(90)80063-C
  13. Attard, G. A.; Bannister, A. J. Electroanal. Chem. 1991, 300, 467. https://doi.org/10.1016/0022-0728(91)85411-H
  14. Clavilier, J.; Llorca, M. J.; Feliu, J. M.; Aldaz, A. J. Electroanal.Chem. 1991, 310, 429. https://doi.org/10.1016/0022-0728(91)85279-X
  15. Feliu, J. M.; Fernandez-Vega, A.; Orts, J. M.; Aldaz, A. J. Chim.Phys. 1991, 88, 1493. https://doi.org/10.1051/jcp/1991881493
  16. Feliu, J. M.; Gomez, R.; Llorca, M. J.; Aldaz, A. Surf. Sci. 1993,289, 152. https://doi.org/10.1016/0039-6028(93)90894-P
  17. Feliu, J. M.; Llorca, M. J.; Gomez, G.; Aldaz, A. Surf. Sci. 1993,297, 209. https://doi.org/10.1016/0039-6028(93)90265-L
  18. Llorca, M. J.; Feliu, J. M.; Aldaz, A. J. Electroanal. Chem. 1993,351, 299. https://doi.org/10.1016/0022-0728(93)80241-9
  19. Orts, J. M.; Rodes, A.; Feliu, J. M. J. Electroanal. Chem. 1997,434, 121. https://doi.org/10.1016/S0022-0728(97)00098-3
  20. Chrzanowski, A.; Wieckowski, A. Langmuir 1997, 13, 5974. https://doi.org/10.1021/la970193c
  21. Jung, G.; Park, H.; Rhee, C. K. J. Electroanal. Chem. 1998, 453,243. https://doi.org/10.1016/S0022-0728(98)00174-0
  22. Smith, S. P. E.; Abruna, A. D. J. Phys. Chem. B 1998, 102, 3506. https://doi.org/10.1021/jp9804648
  23. Clavilier, J.; Fernandez-Vega, A.; Feliu, J. M.; Aldaz, A. J. Electroanal.Chem. 1989, 258, 89. https://doi.org/10.1016/0022-0728(89)85164-2
  24. Clavilier, J.; Fernandez-Vega, A.; Feliu, J. M.; Aldaz, A. J. Electroanal.Chem. 1989, 261, 113. https://doi.org/10.1016/0022-0728(89)87130-X
  25. Fernandez-Vega, A.; Feliu, J. M.; Aldaz, A. J. Electroanal. Chem.1989, 258, 101. https://doi.org/10.1016/0022-0728(89)85165-4
  26. Fernandez-Vega, A.; Feliu, J. M.; Aldaz, A.; Clavilier, J. J. Electroanal.Chem. 1991, 305, 229. https://doi.org/10.1016/0022-0728(91)85521-P
  27. Chang, S.-C.; Weaver, M. J. Surf. Sci. 1991, 241, 11. https://doi.org/10.1016/0039-6028(91)90206-8
  28. Chang, S.-C.; Ho, Y.; Weaver, M. J. Surf. Sci. 1992, 265, 81. https://doi.org/10.1016/0039-6028(92)90489-S
  29. Herrero, E.; Fernandez-Vega, A.; Feliu, J. M.; Aldaz, A. J. Electroanal.Chem. 1993, 350, 73. https://doi.org/10.1016/0022-0728(93)80197-P
  30. Herrero, E.; Franaszczuk, K.; Wieckowski, A. J. Electroanal.Chem. 1993, 361, 269. https://doi.org/10.1016/0022-0728(93)87065-4
  31. Herrero, E.; Feliu, J. M.; Aldaz, A. J. Electroanal. Chem. 1994,368, 101. https://doi.org/10.1016/0022-0728(93)03032-K
  32. Llorca, M. J.; Feliu, J. M.; Aldaz, A.; Clavilier, J. J. Electroanal.Chem. 1994, 376, 151. https://doi.org/10.1016/0022-0728(94)03506-7
  33. Kizhakevariam, N.; Weaver, M. J. Surf. Sci. 1994, 310, 183. https://doi.org/10.1016/0039-6028(94)91383-8
  34. Herrero, E.; Rodes, A.; Perez, J. M.; Feliu, J. M.; Aldaz, A. J.Electroanal. Chem. 1995, 93, 87. https://doi.org/10.1016/S0022-0728(78)80221-6
  35. Herrero, E.; Llorca, M. J.; Feliu, J. M.; Aldaz, A. J. Electroanal.Chem. 1995, 383, 145. https://doi.org/10.1016/0022-0728(94)03721-E
  36. Herrero, E.; Llorca, M. J.; Feliu, J. M.; Aldaz, A. J. Electroanal.Chem. 1995, 394, 161. https://doi.org/10.1016/0022-0728(95)03963-H
  37. Llorca, M. J.; Herrero, E.; Feliu, J. M.; Aldaz, A. J. Electroanal.Chem. 1995, 373, 217. https://doi.org/10.1016/0022-0728(94)03326-9
  38. Herrero, E.; Rodes, A.; Perez, J. M.; Feliu, J. M.; Aldaz, A. J.Electroanal. Chem. 1996, 412, 165. https://doi.org/10.1016/0022-0728(96)04626-8
  39. Leiva, E.; Iwasita, T.; Herrero, E.; Feliu, J. M. Langmuir 1997, 13,6287. https://doi.org/10.1021/la970535e
  40. Chrzanowski, W.; Wieckowski, A. Catal. Letters 1998, 50, 69. https://doi.org/10.1023/A:1019042329841
  41. Chrzanowski, W.; Wieckowski, A. Langmuir 1998, 14, 1967. https://doi.org/10.1021/la980184j
  42. Climent, V.; Herrero, E.; Feliu, J. M. Electrochim. Acta 1998, 44,1403. https://doi.org/10.1016/S0013-4686(98)00263-1
  43. Smith, S. P. E.; Abruna, A. D. J. Electroanal. Chem. 1999, 467,43. https://doi.org/10.1016/S0022-0728(98)00447-1
  44. Smith, S. P. E.; Ben-Dor, K. F.; Abruna, A. D. Langmuir 2000, 16,787. https://doi.org/10.1021/la990816h
  45. Rhee, C. K.; Kim, D. K. J. Electroanal. Chem. 2001, 506, 149. https://doi.org/10.1016/S0022-0728(01)00495-8
  46. Jung, G.; Rhee, C. K. J. Electroanal. Chem. 1997, 436, 277. https://doi.org/10.1016/S0022-0728(97)00384-7
  47. Clavilier, J.; Faure, R.; Guinet, G.; Durand, R. J. Electroanal.Chem. 1980, 107, 205. https://doi.org/10.1016/S0022-0728(79)80022-4
  48. Clavilier, J.; Armand, D. J. Electroanal. Chem. 1986, 199, 187. https://doi.org/10.1016/0022-0728(86)87051-6