DOI QR코드

DOI QR Code

Theoretical Approach for the Equilibrium Structures and Relative Energies of C7H7+ Isomers and the Transition States between o-, m-, and p-Tolyl Cations

  • Shin, Chang-Ho (Department of Chemistry, HanNam University) ;
  • Park, Kyung-Chun (Department of Chemistry, HanNam University) ;
  • Kim, Seung-Joon (Department of Chemistry, HanNam University) ;
  • Kim, Byung-Joo (Division of Chemical Metrology and Materials Evaluation, Korea Research Institute of Standards and Science)
  • Published : 2002.02.20

Abstract

The equilibrium structures for the ground and transition states of $C_7H_7^+$ isomers have been investigated using sophisticated ab initio quantum mechanical techniques with various basis sets. The structures of tropyrium and benzyl cations have been fully optimized at the DZP CCSD(T) levels of theory. And the structures of o-, m-and p-tolyl cations are optimized fully up to the DZ CCSD(T) levels of theory. The geometries for the transition states between three isomers of tolyl cations have been optimized up to DZP CISD level of theory. The SCF harmonic vibrational frequencies for tropylium, benzyl, and three isomers of tolyl cations are all real numbers, which confirm the potential minima and each unique imaginary vibrational frequencies for TS1 and TS2 confirm the true transition states. The relative energy of the benzyl cation with respect to the tropyrium cation is predicted to be 28.5 kJ/mol and is in good agreement with the previous theoretical predictions. The 0 K heats of formation, ${\Delta}H^{\circ}_{f0}$, have been predicted to be 890, 1095, 1101, and 1110 kJ/mol for tropylium, ortho-, meta-, and para-tolyl cations by taking the experimental value of 919 kJ/mol for the benzyl cation as the base level. The relative stability between tolyl cations is in the order of ortho

Keywords

References

  1. Lin, C. Y.; Dunbar, R. C. J. Phys. Chem. 1994, 98, 1369 https://doi.org/10.1021/j100056a001
  2. Dunbar, R. C.; Honovich, J. P.; Asamoto, B. J. Phys. Chem. 1988, 92, 6935 https://doi.org/10.1021/j100335a019
  3. Dunbar, R. C.; Lifshitz, C. J. Chem. Phys. 1991, 94, 3542 https://doi.org/10.1063/1.459776
  4. Lifshitz, C.; Levin, I.; Kababia, S.; Dunbar, R. C. J. Phys. Chem. 1991, 95, 1667 https://doi.org/10.1021/j100157a032
  5. Shin, S. K.; Han, S. J.; Kim, B. Int. J. Mass Spectrom. Ion Processes 1996, 158, 345 https://doi.org/10.1016/S0168-1176(96)04463-1
  6. Kim, B.; Shin, S. K. J. Chem. Phys. 1997, 106, 1411 https://doi.org/10.1063/1.473289
  7. Choe, J. C.; Kim, M. S. Int. J. Mass Spectrom. Ion Processes 1991, 107, 103 https://doi.org/10.1016/0168-1176(91)85076-X
  8. Cho, Y. S.; Kim, M. S.; Choe, J. C. Int. J. Mass Spectrom. Ion Processes 1995, 145, 187 https://doi.org/10.1016/0168-1176(95)04228-D
  9. Olesik, S.; Baer, T.; Morrow, J. C.; Ridal, J. J.; Buschek, J.; Holmes, J. L. Org. Mass Spectrom. 1989, 24, 1008 https://doi.org/10.1002/oms.1210241107
  10. Jackson, J.-A.; Lias, S. G.; Ausloos, P. J. Am. Chem. Soc. 1977, 99, 7515 https://doi.org/10.1021/ja00465a020
  11. McLafferty, F. W.; Bockhoff, F. M. Org. Mass Spectrom. 1979, 14, 181 https://doi.org/10.1002/oms.1210140402
  12. Lifshitz, C. Acc. Chem. Soc. 1994, 27, 138 https://doi.org/10.1021/ar00041a004
  13. McLafferty, F. W.; Bockhoff, F. M. J. Am. Chem. Soc. 1979, 101, 1783 https://doi.org/10.1021/ja00501a024
  14. Baer, T.; Morrow, J. C.; Shao, J. D.; Olesik, S. J. Am. Chem. Soc. 1988, 110, 5633 https://doi.org/10.1021/ja00225a008
  15. Morgenthaler, L. N.; Eyler, J. R. Int. J. Mass Spectrom. Ion Processes 1981, 31, 153
  16. Traeger, J. C.; Kompe, B. M. Int. J. Mass Spectrom. Ion Processes 1990, 101, 111 https://doi.org/10.1016/0168-1176(90)87004-Z
  17. Houle, F. A.; Beauchamp, J. L. J. Am. Chem. Soc. 1978, 100, 3293
  18. Mcmillen, D. F.; Golden, D. M. Annu. Rev. Phys. Chem. 1982, 33, 493 https://doi.org/10.1146/annurev.pc.33.100182.002425
  19. Eiden, G. C.; Lu, K.-T.; Badenhoop, J.; Weinhold, F.; Weisshaar, J. C. J. Chem. Phys. 1996, 104, 8886 https://doi.org/10.1063/1.471624
  20. Dunbar, R. C. J. Am. Chem. Soc. 1973, 95, 472 https://doi.org/10.1021/ja00783a028
  21. Cone, C.; Dewar, J. S.; Landman, D. J. Am. Chem. Soc. 1977, 99, 372 https://doi.org/10.1021/ja00444a011
  22. Nicolaides, A.; Radom, L. J. Am. Chem. Soc. 1994, 116, 9769 https://doi.org/10.1021/ja00100a060
  23. Shin, S. K. Chem, Phys. Lett. 1997, 280, 260 https://doi.org/10.1016/S0009-2614(97)01145-7
  24. Ignatyev, I. S.; Sundius, T. Chem. Phys. Lett. 2000, 326, 101 https://doi.org/10.1016/S0009-2614(00)00767-3
  25. Huzinaga, S. J. Chem. Phys. 1965, 42, 1293 https://doi.org/10.1063/1.1696113
  26. Dunning, T. H. J. Chem. Phys. 1970, 53, 2823 https://doi.org/10.1063/1.1674408
  27. Dunning, T. H. J. Chem. Phys. 1971, 55, 716 https://doi.org/10.1063/1.1676139
  28. Yamaguchi, Y.; Osamura, Y.; Goddard, J. D.; Schaefer, H. F. A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab initio Molecular Electronic structure Theory; Oxford University Press: New York, 1994
  29. Brooks, B. R.; Laidig, W. D.; Sate, P.; Goddard, J. D.; Yamaguchi, Y.; Schaefer, H. F. J. Chem. Phys. 1980, 72, 4652 https://doi.org/10.1063/1.439707
  30. Scheiner, A. C.; Scuseria, G. E.; Rice, J. E.; Lee, T. J.; Schaefer, H. F. J. Chem. Phys. 1987, 87, 5361 https://doi.org/10.1063/1.453655
  31. Saxe, P.; Yamaguchi, Y.; Schaefer, H. F. J. Chem. Phys. 1982, 77, 5647 https://doi.org/10.1063/1.443771
  32. Janssen, C. L.; Seidl, E. T.; Scuseria, G. E.; Hamilton, T. P.; Yamaguchi, Y.; Remington, R. B.; Xie, Y.; Vacek, G.; Sherrill, C. D.; Crawford, T. D.; Fermann, J. T.; Allen, W. D.; Brocks, B. R.; Fitzgerald, G. B.; Fox, D. J.; Gaw, J. F.; Handy, N. C.; Laidig, W. D.; Lee, T. J.; Pitzer, R. M.; Rice, J. E.; Saxe, P.; Scheiner, A. C.; Schaefer, H. F. PSI 2.0.8; PSITECH Inc.: Watkinssvills, GA. U.S.A., 1994
  33. Cabana, A.; Bachand, J.; Giguere, J. Can. J. Phys. 1974, 52, 1949 https://doi.org/10.1139/p74-256
  34. Grev, R. S.; Janssen, C. L.; Schaefer, H. F. J. Chem. Phys. 1991, 95, 5128 https://doi.org/10.1063/1.461680
  35. Klots, C. J. Phys. Chem. 1992, 96, 1733 https://doi.org/10.1021/j100183a044

Cited by

  1. Methylene-transfer reactions of benzylium/tropylium ions with neutral toluene studied by means of ion-trap mass spectrometry vol.145, pp.1364-5498, 2010, https://doi.org/10.1039/B907236E
  2. LABORATORY INVESTIGATIONS OF POLYCYCLIC AROMATIC HYDROCARBON FORMATION AND DESTRUCTION IN THE CIRCUMSTELLAR OUTFLOWS OF CARBON STARS vol.208, pp.1, 2013, https://doi.org/10.1088/0067-0049/208/1/6
  3. From Fragmentation to Construction-from Void to Massive: Fascination with Organic Mass Spectrometry and the Synthesis of Novel Three-Dimensional Polycyclic Aromatic Hydrocarbons vol.15, pp.6, 2015, https://doi.org/10.1002/tcr.201500023
  4. Structure and Dissociation Pathways of Protonated Tetralin (1,2,3,4-Tetrahydronaphthalene) vol.121, pp.24, 2017, https://doi.org/10.1021/acs.jpca.7b01858
  5. -Monocarbaborane Anions vol.44, pp.15, 2005, https://doi.org/10.1002/anie.200462209
  6. -Monocarbaborane Anions vol.117, pp.15, 2005, https://doi.org/10.1002/ange.200462209
  7. The Rearrangement of Dicarboranyl Methyl Cation: A Possible Synthetic Strategy Toward Cationic closo-Tricarbaboranes vol.42, pp.24, 2003, https://doi.org/10.1021/ic035178b
  8. Ab Initio Quantum Mechanical Investigation of H2(An+1X2n)H2(A=C or Si, X=O or S, n = 1-2)]; Energetics, Molecular Structures, and Vibrational Frequencies vol.26, pp.1, 2002, https://doi.org/10.5012/bkcs.2005.26.1.119
  9. C7H7+ 양이온의 여러 이성질체들과 전이 상태들의 분자구조 및 분광학적 특성에 관한 이론적 연구 vol.49, pp.3, 2002, https://doi.org/10.5012/jkcs.2005.49.3.247
  10. On the Benzylium/Tropylium Ion Dichotomy: Electronic Absorption Spectra in Neon Matrices vol.123, pp.13, 2002, https://doi.org/10.1002/ange.201008036
  11. On the Benzylium/Tropylium Ion Dichotomy: Electronic Absorption Spectra in Neon Matrices vol.50, pp.13, 2002, https://doi.org/10.1002/anie.201008036
  12. Exploration of minima on the C 7 H 7 + $_{\boldsymbol {7}} \text{H}_{\boldsymbol {7}}^{\boldsymbol {+} }$ surface: Structural, stability- and charge-related considerations vol.126, pp.4, 2002, https://doi.org/10.1007/s12039-014-0646-4