References
- Solomon, E. I; Sundaram, U. M.; Machonkin, T. E. Chem. Rev.1996, 96, 2563. https://doi.org/10.1021/cr950046o
- Reinhammer, B. Chem. Scrip. 1985, 25, 172.
- Solomon, E. I.; Baldwin, M. J.; Lowery, M. D. Chem. Rev.1992, 92, 521. https://doi.org/10.1021/cr00012a003
- Bligny, R.; Douce, R. Biochem. J. 1983, 209, 489. https://doi.org/10.1042/bj2090489
- LaFayette, P. R.; Eriksson, K.-E. L.; Dean, J. F. D. Plant Physiol.1995, 107, 667. https://doi.org/10.1104/pp.107.2.667
- Sterjiades, R.; Dean, J. F. D.; Eriksson, K.-E.L. Plant Physiol. 1992, 99, 1162. https://doi.org/10.1104/pp.99.3.1162
- Driouich, A.; Laine, A.-C.;Vian, B.; Faye, L. Plant Physiol. 1992, 2, 13.
- Bao, W.;O'Malley, D. M.; Whetten, R.; Sederoff, R. R. Science 1993, 260, 672. https://doi.org/10.1126/science.260.5108.672
- Bollag, J. M.; Leonowicz, A. Appl. Environ. Microbiol. 1984,48, 849.
- Dean, J. F. D.; Eriksson, K.-E. L. Holzforschung1994, 48, 21. https://doi.org/10.1515/hfsg.1994.48.s1.21
- Wahleithner, J. A.; Xu, F.; Brown, K. M.; Brown, S. H.; Gotightly,E. J.; Halkier, T.; Kauppimen, S.; Pederson, A.; Schneider, P. Curr.Genet. 1996, 29, 395. https://doi.org/10.1007/BF02208621
- Hoshi, T.; Anzai, J.-I.; Osa, T. Anal. Chem. 1995, 67, 770. https://doi.org/10.1021/ac00100a013
- Kajiya, Y.; Okamoto, T.; Yoneyama, H. Chemistry Letters 1993,2107.
- Riklin, A.; Willner, I. Anal. Chem. 1995, 67, 4118. https://doi.org/10.1021/ac00118a014
- deLumley-Woodyear, T.; Rocca, P.; Lindsay, J.; Dror, Y.; Freeman,A.; Heller, A. Anal. Chem. 1995, 67, 1332. https://doi.org/10.1021/ac00104a006
- Calvo, E. H.;Danilowicz, C.; Diaz, L. J. Electroanal. Chem. 1994, 369, 279. https://doi.org/10.1016/0022-0728(94)87112-4
- Tatsuma, T.; Saito, K.; Oyama, N. Anal. Chem. 1994, 66, 1002. https://doi.org/10.1021/ac00079a012
- Lee, C.W.; Gray, H. B.; Anson, F. C.; Malmstrom, B. G. J.Electroanal. Chem. 1984, 172, 289. https://doi.org/10.1016/0022-0728(84)80193-X
- Ruiz, A. I.; Malave, A. J.; Felby, C.; Griebenow, K. Biotech. Lett.2000, 22, 229. https://doi.org/10.1023/A:1005698301681
- Annibale, A. D.; Stazi, S. R.; Vinciguerra, V.; Mattia, C. D.;Sermanni, G. G. Process Biochem. 1999, 34, 697. https://doi.org/10.1016/S0032-9592(98)00144-7
- Reyes, P.; Pickard, M.; Vazquez-Duhalt, A. R. Biotech. Lett. 1999,21, 875. https://doi.org/10.1023/A:1005502906890
- Bogdanovskaya, V. A.; Tarasevich, M. R.; Sheller, F.; Pfeifer,D.; Wollenberger, U. Electrokhimiya 1987, 23, 666.
- Crecchio,C.; Ruggiero, P.; Pizzigallo, M. D. V. Biotech. Bioeng. 1995, 48,585. https://doi.org/10.1002/bit.260480605
- Hyung, K. H.; Jun, K. Y.; Hong, H.-G.; Kim, H. S., Shin, W.Bull. Korean Chem. Soc. 1997, 18, 564.
- Hyung, K. H.; Shin,W. J. Korean Electrochem. Soc. 1999, 2, 31.
- Lisdat, F.; Wollenberger, U.; Makower, A.; Hortnagal, H.;Pfeiffer, D.; Scheller, F. W. Biosens. Bioelectron. 1997, 12(12),1199. https://doi.org/10.1016/S0956-5663(97)00098-5
- Ghindilis, A. L.; Makower, A.; Bauer, C. G.; Bier, F. F.;Sheller, F. W. Anal. Chim. Acta 1995, 304, 25. https://doi.org/10.1016/0003-2670(94)00580-F
- Xu, F.; Shin, W.; Brown, S. H.; Wahleithner, J.; Sundaram, U. M.;Solomon, E. I. Biochim. Biophys. Acta 1996, 1292, 303. https://doi.org/10.1016/0167-4838(95)00210-3
- Rakohl, M.; Urban, G. Sensors and Actuators B 1992, 7, 356. https://doi.org/10.1016/0925-4005(92)80324-Q
- Williams, R. A.; Blanch, H. W. Biosens. Bioelectron 1994, 9,159 https://doi.org/10.1016/0956-5663(94)80108-8
- Kharitonov, A. B.; Zayats, M.; Lichtenstein, A.; Katz, E.;Willner, I. Sensors and Actuators B 2000, 70, 222. https://doi.org/10.1016/S0925-4005(00)00573-6
- Freire, R.S.; Duran, N.; Kubota, L. T. Talanta 2001, 54, 681. https://doi.org/10.1016/S0039-9140(01)00318-6
- Bourbonnais, R.; Leech, D.; Paice, M. G. Biochim. Biophys. Acta1998, 1379, 381. https://doi.org/10.1016/S0304-4165(97)00117-7
- Price, N. C.; Stevens, L. Fundamentals of Enzymology; Oxford:New York, 1999; p 118.
- Bourbonnais, R.; Paice, M. G. FEBS Lett. 1990, 267, 99. https://doi.org/10.1016/0014-5793(90)80298-W
- Adams, R. N. Electrochemistry at Solid Electrodes; MarcelDekker, Inc.: New York, 1969; p 356.
- Rahni, M. A. N.; Lubrano, G. J.; Guilbault, G. G. J. Agric. FoodChem. 1987, 35, 1001. https://doi.org/10.1021/jf00078a034
Cited by
- Resonance Raman Evidence of Immobilization of Laccase on Self-Assembled Monolayers of Thiols on Ag and Au Surfaces vol.60, pp.7, 2006, https://doi.org/10.1366/000370206777887035
- Heterologous laccase production and its role in industrial applications vol.1, pp.4, 2010, https://doi.org/10.4161/bbug.1.4.11438
- Nanoparticles as Support vol.52, pp.12, 2013, https://doi.org/10.1021/ie302627c
- Enhanced production of laccase fromTrametes sp. by combination of various inducers vol.11, pp.2, 2006, https://doi.org/10.1007/BF02931890
- Thick Film Ceramic Combinatorial Libraries: The Substrate Problem vol.26, pp.10, 2007, https://doi.org/10.1002/qsar.200620162
- An Electrochemical Biosensor Array for Rapid Detection of Alanine Aminotransferase and Aspartate Aminotransferase vol.73, pp.3, 2009, https://doi.org/10.1271/bbb.60043
- Amperometric Detection of Some Catechol Derivatives and o-aminophenol Derivative with Laccase Immobilized Electrode: Effect of Substrate Structure vol.7, pp.2, 2002, https://doi.org/10.5229/jkes.2004.7.2.083
- Immobilization of ABTS – laccase system in silicate based electrode for biolectrocatalytic reduction of dioxygen vol.8, pp.12, 2002, https://doi.org/10.1016/j.elecom.2006.08.024
- Electrochemical biosensor array for liver diagnosis using silanization technique on nanoporous silicon electrode vol.103, pp.1, 2007, https://doi.org/10.1263/jbb.103.32
- The evolution and developments of immunosensors for health and environmental monitoring: problems and perspectives vol.26, pp.2, 2002, https://doi.org/10.1590/s0104-66322009000200001
- Hydrophilic carbon nanoparticle-laccase thin film electrode for mediatorless dioxygen reduction : SECM activity mapping and application in zinc-dioxygen battery vol.54, pp.20, 2009, https://doi.org/10.1016/j.electacta.2009.02.072
- Amperometric sensing of dopamine using a single-walled carbon nanotube covalently attached to a conical glass micropore electrode vol.12, pp.4, 2002, https://doi.org/10.1016/j.elecom.2010.01.038
- Fabrication of an Amperometric Flow-Injection Microfluidic Biosensor Based on Laccase for In Situ Determination of Phenolic Compounds vol.2015, pp.None, 2002, https://doi.org/10.1155/2015/845261
- Improvement of amperometric laccase biosensor using enzyme-immobilized gold nanoparticles coupling with ureasil polymer as a host matrix vol.52, pp.2, 2019, https://doi.org/10.1007/s13404-019-00255-z