DOI QR코드

DOI QR Code

Amine and Olefin Complexes of Pt(II) Having a PCP-Pincer Ligand

  • Published : 2002.01.20

Abstract

$Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(OTf)\;(OTf=CF_3SO_3^-)$ readily reacts with various amines to afford cationic amine complexes $[Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(amine)](OTf)\;(amine=NH_3,\;NHMe_2,\;NHC_4H_8,\;NH_2Ph,\;NH_2(Tol-p))$ in high yields. These complexes have been fully characterized by IR, $^1H-,\;^{19}F{^1H}-,\;and\;^{31}P{^1H}-NMR$ spectroscopy, and elemental analyses. Reaction of $Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(OTf)$ with acrylonitrile quantitatively produced the ${\pi}$-olefinic complex $Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(CH_2=CHCN)](OTf)$ which is only stable in solution in the presence of acrylonitrile. Attempt at isolating this complex in the pure solid state was failed due to partial decomposition into $Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(OTf)$ The equilibrium constants $(K_{eq}=[Pt(PCP)-(NH_2R)^+][CH_2=CHCN]/[Pt(PCP)(CH_2=CHCN)^+][NH_2R]:\;[Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(CH_2=CHCN)]^++NH_2R{\rightleftarrows}[Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(NH_2R)]^++CH_2=CHCN=Ph,\;p-tolyl)$ were calculated to be 0.28 (for R = Ph) and 3.1 (R = p-tolyl) at $21^{\circ}C$. The relative stability of the ${\sigma}$-donor amine versus the ${\pi}$-olefinic acrylonitrile complex has been found largely dependent upon the amine-basicity $(pK_b)$, implicating that acrylonitrile practically competes with amine in the platinum coordination sphere. On the contrary to the formation of the acrylonitrile complex, no reaction of $Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(OTf)$ with other olefins such as ethylene, styrene and methyl acrylate was observed.

Keywords

References

  1. Roundhill, D. M. Catal. Today 1997, 37, 155. https://doi.org/10.1016/S0920-5861(97)00008-4
  2. Roundhill, D. M. Chem. Rev. 1992, 92, 1. https://doi.org/10.1021/cr00009a001
  3. Muller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675. https://doi.org/10.1021/cr960433d
  4. Taube, R. In Applied Homogeneous Catalysis with Organometallic Compounds; Cornils, B., Herrmann, W. A., Eds.; VCH: New York, 1996; Vol. 6, p 507.
  5. Muller, T. E.; Beller, M. In Transition Metals for Organic Synthesis; Beller, M., Bolm, C., Eds.; Wiley-VCH: New York, 1998; Vol. 2, p 316.
  6. Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. J. Am. Chem. Soc. 1988, 110, 6738. https://doi.org/10.1021/ja00228a022
  7. Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. Inorg. Chem. 1987, 26, 971. https://doi.org/10.1021/ic00254a001
  8. Schulz, M.; Milstein, D. J. Chem. Soc., Chem. Comm. 1993, 318.
  9. Cowan, R. L.; Trogler, W. C. J. Am. Chem. Soc. 1989, 111, 4750. https://doi.org/10.1021/ja00195a031
  10. Seligson, A. L.; Cowan, R. L.; Trogler, W. C. Inorg. Chem. 1991, 30, 3371. https://doi.org/10.1021/ic00018a003
  11. Driver, M. S.; Hartwig, J. F. Organometallics 1998, 17, 1134. https://doi.org/10.1021/om971049p
  12. Aresta, M.; Quaranta, E.; Dibenedetto, A.; Giannoccaro, P.; Tommasi, I.; Lanfranchi, M.; Tiripicchio, A. Organometallics 1997, 16, 834. https://doi.org/10.1021/om960602k
  13. Ladipo, F. T.; Merola, J. S. Inorg. Chem. 1990, 29, 4172. https://doi.org/10.1021/ic00346a003
  14. Basolo, F.; Pearson, R. G. Mechanisms of Inorganic Reactions, 2nd ed.; Wiley: New York, 1967; p 33.
  15. Wagner, F.; Barefield, E. K. Inorg. Chem. 1976, 15, 408. https://doi.org/10.1021/ic50156a034
  16. Romeo, R.; Minniti, D.; Alibrandi, G.; De Cola, L.; Tobe, M. L. Inorg. Chem. 1986, 25, 1944. https://doi.org/10.1021/ic00232a007
  17. Bernhard, P.; Bull, D. J.; Buergi, H.-B.; Osvath, P.; Raselli, A.; Sargeson, A. M. Inorg. Chem. 1997, 36, 2804. https://doi.org/10.1021/ic961021q
  18. Song, B.; Reuber, J.; Ochs, C.; Hahn, F. E.; Luegger, T.; Orvig, C. Inorg. Chem. 2001, 40, 1527. https://doi.org/10.1021/ic0009831
  19. Louie, J.; Paul, F.; Hartwig, J. F. Organometallics 1996, 15, 2794. https://doi.org/10.1021/om960188o
  20. Villanueva, L. A.; Abboud, K. A.; Boncella, J. M. Organometallics 1992, 11, 2963. https://doi.org/10.1021/om00045a004
  21. Koo, K.; Hillhouse, G. L. Organometallics 1995, 14, 4421. https://doi.org/10.1021/om00009a054
  22. Driver, M. S.; Hartwig, J. F. J. Am. Chem. Soc., 1996, 118, 4206. https://doi.org/10.1021/ja954129y
  23. Ryu, S. Y.; Yang, W.; Kim, H. S.; Park, S. Bull. Korean Chem. Soc. 1997, 18, 1183.
  24. Ryu, S. Y.; Kim, H.; Kim, H. S.; Park, S. J. Organomet. Chem. 1999, 592, 194. https://doi.org/10.1016/S0022-328X(99)00511-2
  25. Seligson, A. L.; Trogler, W. C. Organometallics 1993, 12, 744. https://doi.org/10.1021/om00027a026
  26. Beller, M.; Eichberger, M.; Trauthwein, H. Angew. Chem., Int. Ed. Engl. 1997, 36, 2225. https://doi.org/10.1002/anie.199722251
  27. Beller, M.; Trauthwein, H.; Eichberger, M.; Breindl, C.; Herwig, J.; Muller, T. E.; Thiel, O. R. Eur. J. Chem. 1999, 5, 1306. https://doi.org/10.1002/(SICI)1521-3765(19990401)5:4<1306::AID-CHEM1306>3.0.CO;2-4
  28. Yamamoto, Y.; Radhakrishnan, U. Chem. Soc. Rev. 1999, 28, 199. https://doi.org/10.1039/a806581k
  29. Rimml, H.; Venanzi, L. M. J. Organomet. Chem. 1983, 259, C6. https://doi.org/10.1016/0022-328X(83)85164-X
  30. Moulton, C. J.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1976, 1020.
  31. Creaser, C. S.; Kaska, W. C. Inorg. Chim. Acta 1978, 30, L325. https://doi.org/10.1016/S0020-1693(00)88995-1
  32. Bennett, M. A.; Jin, H.; Willis, A. C. J. Organomet. Chem. 1993, 451, 249. https://doi.org/10.1016/0022-328X(93)83032-Q
  33. Kraatz, H-B.; Milstein, D. J. Organomet. Chem. 1995, 488, 223. https://doi.org/10.1016/0022-328X(94)00027-A
  34. Kennedy, A. R.; Cross, R. J.; Muir, K. W. Inorg. Chim. Acta 1995, 231, 195. https://doi.org/10.1016/0020-1693(94)04321-L
  35. Cross, R. J.; Kennedy, A. R.; Muir, K. W. J. Organomet. Chem. 1995, 487, 227. https://doi.org/10.1016/0022-328X(94)05106-L
  36. Park, S. Bull. Korean Chem. Soc. 2000, 21, 1251.
  37. Park, S. Bull. Korean Chem. Soc. 2001, 22, 15.
  38. Seul, J. M.; Park, S. J. Chem. Soc. Dalton Trans. in press.
  39. Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: Oxford, 1988
  40. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 5th ed.; Wiley: New York, 1997; pp 1-13
  41. Geary, W. J. Coord. Chem. Rev. 1971, 7, 81 https://doi.org/10.1016/S0010-8545(00)80009-0
  42. Pregosin, P. S.; Kunz, R. W. $^{31}P$ and $^{13}C$ NMR of Transition Metal Phosphine Complexes; Springer-Verlag: Berlin, 1979; pp 16-28
  43. Verkade, J. G. Chem. Rev. 1972, 9, 1.
  44. Pregosin, P. S.; Kunz, R. Helv. Chim. Acta 1975, 58, 423. https://doi.org/10.1002/hlca.19750580211
  45. Verstuyft, A. W.; Nelson, J. H.; Cary, L. W. Inorg. Chem. 1976, 15, 732. https://doi.org/10.1021/ic50157a050
  46. Pregosin, P. S.; Kunz, R. W. $^{31}P\;and\;^{13}C$ NMR of Transition Metal Phosphine Complexes; Springer-Verlag: Berlin, 1979; p 65.
  47. Yang, K.; Lachicotte, R. J.; Eisenberg, R. Organometallics 1998, 17, 5102 https://doi.org/10.1021/om980551m
  48. Yamamoto, A.; Yamamoto, T.; Ikeda, S. J. Am. Chem. Soc. 1971, 93, 3350. https://doi.org/10.1021/ja00743a009
  49. Guggenberger, L. J. Inorg. Chem. 1973, 12, 499. https://doi.org/10.1021/ic50121a001
  50. Jensen, C. M.; Trogler, W. C. J. Am. Chem. Soc. 1986, 108, 723. https://doi.org/10.1021/ja00264a025
  51. Fryzuk, M. D.; Gao, X.; Rettig, S. J. J. Am. Chem. Soc. 1995, 117, 3106. https://doi.org/10.1021/ja00116a015
  52. Fusto, M.; Giordano, F.; Orabona, I.; Ruffo, F. Organometallics 1997, 16, 5981. https://doi.org/10.1021/om970428f
  53. Ganis, P.; Orabona, I.; Ruffo, F.; Vitagliano, A. Organometallics 1998, 17, 2646. https://doi.org/10.1021/om9800750
  54. Seligson, A. L.; Trogler, W. C. Organometallics 1993, 12, 744 https://doi.org/10.1021/om00027a026
  55. Hahn, C.; Vitagliano, A.; Giordano, F.; Taube, R. Organometallics 1998, 17, 2060. https://doi.org/10.1021/om970699q
  56. Hahn, C.; Morvillo, P.; Vitagliano, A. Eur. J. Inorg. Chem. 2001, 2, 419.

Cited by

  1. Molecular-Weight-Enlarged Multiple-Pincer Ligands: Synthesis and Application in Palladium-Catalyzed Allylic Substitution Reactions vol.2, pp.6, 2009, https://doi.org/10.1002/cssc.200800256
  2. (N-C-N) 세자리 리간드를 가지는 니켈 착물 vol.51, pp.6, 2002, https://doi.org/10.5012/jkcs.2007.51.6.499
  3. Bis(imino)aryl Complex of Nickel(II): N,C,N-Pincer Type Complex, (2,6-(2,6-Et2PhN=CH)2C6H3)NiBr vol.29, pp.1, 2002, https://doi.org/10.5012/bkcs.2008.29.1.187