DOI QR코드

DOI QR Code

Interpretation of Dispersion Phenomena in Grunwald-Winstein Correlation for Solvolyses of Naphthoyl Chloride

  • Published : 2002.01.20

Abstract

Solvolyses rate constant of 1- and 2- naphthoyl chlorides (1 and 2) are reported for aqueous binary mixtures with methanol, ethanol, fluorinated alcohol, acetonitrile and dioxane. Kinetic solvent isotope effects (KISE) in methanol and product selectivities (S) of 2-naphthoyl chloride (2) in alcohol-water are also reported. Dispersions in Grunwald-Winstein correlations $(r{\leq}0.901)$ are discussed by multiple regression analysis incorporating ionizing power $(Y_{Cl})$ scale and rate-rate profiles. Major causes for these phenomena are investigated as an aromatic ring solvation effects, in conjunction with weakly nucleophilic solvation effects ($S_N2$ character), for solvolyses of 1 and for solvolyses of 2, as dual reaction channels, described as $S_N1$-$S_N2$ and $S_AN$-$S_N2$ processes. Distinct border lines between the two pathways are derived from solvolyses rates of 2 in 18 solvent using the results of $log(k/k_o)=mY_{Cl}+lN_T+hI$ plot with values of 1.13 for m, 0.37 for l and 0.15 for h value in 5 aqueous fluorinated alcohol mixtures. Using rate-product correlation, the validity of a third order model based on a general base catalyzed by solvent and contribution from these rate constants, $k_{aa},\;k_{aw}$ and $k_{aw}$, are investigated for $S_AN$-$S_N2$ solvolyses of 2 favored in more rich alcohol media and gradual addition of water to alcohol solvent shows a great shift away from stoichiometric solvation to predominantly medium effects. Rate-rate correlation between solvolyses of 2 and trimethyl acetylchloride (5) with alkyl group in the 29 aqueous solvent mixtures shows appreciable linearity (slope = 0.84, r = 0.987), caused by the same pathway ($S_N1$-$S_N2$ process), even if this correlation coincides with appreciable dispersion (different solvation effect).

Keywords

References

  1. Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846 https://doi.org/10.1021/ja01182a117
  2. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121 https://doi.org/10.1002/9780470171967.ch5
  3. Takeuchi, K.; Ohga, Y.; Ushino, T.; Takasuka, M. J. Org. Chem. 1997, 62, 4904 https://doi.org/10.1021/jo970709x
  4. Koo, I. S.; Yang, K.; Oh, H. K.; Lee, I. Bull. Korean Chem. Soc. 1996, 17, 491
  5. Kevill, D. N.; DSouza, M. J. J. Phys. Org. Chem. 1992, 5, 287 https://doi.org/10.1002/poc.610050602
  6. Schadt, F. L.; Bentley, T. W.; Schleyer, P. v. R. J. Am. Chem. Soc. 1976, 98, 7667. https://doi.org/10.1021/ja00440a037
  7. Bentley, T. W.; Schleyer, P. v. R. Adv. Phs. Org. Chem. 1977, 14, 1. https://doi.org/10.1016/S0065-3160(08)60107-0
  8. Liu, K.-T. J. Chinese Chem. Soc. 1995, 42, 607. https://doi.org/10.1002/jccs.199500082
  9. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845 https://doi.org/10.1021/jo00005a034
  10. Kevill, D. N.; D'Souza, M. J. J. Chem. Res(s). 1993, 174.
  11. Kevill, D. N. In Advances in Quantitative Structure-Property Relationships; Chorton, M., Ed.; JAI Press: Greenwich, CT, 1996; Vol 1, p 81.
  12. Bentley, T. W.; Koo, I. S.; Norman, S. J. J. Org. Chem. 1991, 56, 1604. https://doi.org/10.1021/jo00004a048
  13. Bentley, T. W.; Dau-Schmidt, J.-P.; Llewellyn, G.; Mayr, H. J. Org. Chem, 1992, 57, 2387. https://doi.org/10.1021/jo00034a035
  14. Liu, K.-T.; Sheu, H.-I.; Chiu, P.-F.; Hu, C.-R. Tetrahedron Lett. 1990, 31, 3611. https://doi.org/10.1016/S0040-4039(00)94457-5
  15. Liu, K.-T. J. Org. Chem. 1991, 56, 3021. https://doi.org/10.1021/jo00009a018
  16. Kevill, D. N.; Ismail, N. HJ.; D'souza, M. J. J. Org. Chem. 1994, 59, 6303 https://doi.org/10.1021/jo00100a036
  17. Kevill, D. N.; D'Souza, M. J. J. Chem. Res(s). 1996, 1649
  18. Fujio, M.; Saeki, Y.; Nakamoto, K.; Yatsugi, K.; Goto, M.; Kim, S. H.; Tsuji, Y.; Rapport, Z.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1995, 68, 2603. https://doi.org/10.1246/bcsj.68.2603
  19. Fujio, M.; Susuki, T.; Yatsugi, K.; Saeki, Y.; Goto, N.; Kim, S. H.; Tsuji, Y.; Rapport, Z.; Tsuno, Y. Bull. Chem Soc. Jpn. 1995, 68, 2619. https://doi.org/10.1246/bcsj.68.2619
  20. Bentley, T. W.; Harris, H. C.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1988, 2, 783
  21. Bentley, T. W.; Jones, R. O. J. Chem. Perkin Trans. 2 1993, 2351.
  22. Bentley, T. W.; Jones, R. O.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1994, 753.
  23. Bentley, T. W.; Ryu, Z. H. J. Chem. Soc. Perkin Trans. 2 1994, 761.
  24. Bentley, T. W.; Ebdon, D.; Llewellyn, G.; Abduljabor, M. H.; Miller, B.; Kevill, D. N. J. Chem. Soc. Dalton Trans. 1997, 3819.
  25. Bentley, T. W.; Carter, G. E.; Harris, H. C. J. Chem. Soc. Perkin Trans. 2 1985, 983
  26. Karton, Y.; Process, A. J. Chem. Soc. Perkin Trans. 2 1978, 295.
  27. Bentley, T. W.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1988, 785
  28. Bentley, T. W.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1989, 1385.
  29. Koo, I. S.; Bentley, T. W.; Llewellyn, G.; Kang, D. H.; Lee, I. J. Chem. Soc. Perkin Trans. 2 1991, 175.
  30. Koo, I. S.; Bentley, T. W.; Llewellyn, G.; Norman, S. J. Croatia Chemica Acta 1992, 65(3), 575.
  31. Bentley, T. W.; Shim, C. S. J. Chem. Soc. Perkin Trans. 2 1993, 1659.
  32. Lee, I.; Sung, D. D.; Uhm, T. S.; Ryu, Z. H. J. Chem. Soc. Perkin Trans. 2 1989. 1697.
  33. Sung, D. D.; Kim, Y. H.; Park, Y. M.; Ryu, Z. H.; Lee, I. Bull. Korean Chem. Soc. 1992, 13, 599.
  34. Capon, B.; Ghosh, A. K.; McL, A. Acc. Chem. Res. 1981, 14, 306. https://doi.org/10.1021/ar00070a003
  35. McClelland, R. A.; Santry, L. J. Acc. Chem. Res. 1983, 16, 394. https://doi.org/10.1021/ar00095a001
  36. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc. Perkin Trans. 2 1997, 1721
  37. Bender, M. L.; Chen, M. C. J. Am. Chem. Soc. 1963, 85, 1626. https://doi.org/10.1021/ja00894a020
  38. Olah, G. A.; O'Brien, D. H.; White, A. M. J. Am. Chem. Soc. 1967, 89, 5694. https://doi.org/10.1021/ja00998a036
  39. William, A.; Dogulas, K. T. Chem. Rev. 1975, 75, 627. https://doi.org/10.1021/cr60297a006
  40. Kivinen, A. The Chemistry of Acyl Halides; Patai, S., Ed.; Interscience: New York, 1972; Ch. 6.
  41. Page, M.; Wiliams, A. Organic and Bio-Organic Mechanisms; Longman: 1997; Ch. 7, 145.
  42. Fujio, M.; Kim, H.-J.; Tsuno, Y. Presented in part at Kyushu International Symposium on Physical Organic Chemistry(KISPOC-VIII); Japan, Sept. 1999
  43. Liu, K.-T.; Chen, H. I. Presented in part at Kyushu International Symposium on Physical Organic Chemistry (KISPOC-VIII); Japan, Sept. 1999
  44. Kevill, D. N.; D'Souza, M. J. J. Chem. Res. (M) 1996, 1649
  45. Bentley, T. W.; Harris, H. C. J. Chem. Soc. Perkin Trans. 2 1986, 619
  46. Bentley, T. W.; Llewellyn, G.; Ryu, Z. H. J. Org. Chem. 1998, 14, 4654
  47. Fainberg, A. H.; Winstein, S. J. Am. Chem. Soc. 1956, 78, 2770. https://doi.org/10.1021/ja01593a033
  48. Fainberg, A. H.; Winstein, S. J. Am. Chem. Soc. 1957, 79, 1597. https://doi.org/10.1021/ja01564a021
  49. Raber, W. C.; Neal, Jr.; Dukes, M. D.; Harris, J. M.; Mount, J. J. Am. Chem. Soc. 1978, 8137
  50. Bentley, T. W.; Harris, H. C. J. Org. Chem. 1988, 5, 725
  51. Kevill, D. N.; DSouza, M. J. J. Chem. Res. (S) 1993, 174
  52. Laughton, P. M.; Robertson, R. E. In Solute-Solvent Interaction; Coetzee, J. F.; Ritchie, C. D., Eds.; 1969; p 424
  53. Koo, I. S.; Yang, K. Y.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1989, 9, 948.
  54. Koo, I. S.; Yang, K. Y.; Kang, K.; Lee, I.; Bentley, T. W. J. Chem. Soc. Perkin Trans. 2 1989, 1179.

Cited by

  1. Marked Difference in Solvation Effects and Mechanism between Solvolyses of Substituted Acetylchloride with Alkyl Groups and with Aromatic Rigns in Aqueous Fluorinated Alcohol and in 2,2,2-Trifluoroeth vol.23, pp.8, 2002, https://doi.org/10.5012/bkcs.2002.23.8.1089
  2. Applications of Third Order Models in Solvolytic Reaction of Aliphatic Substituted Acyl Derivatives in 2,2,2-Trifluoroethanol-Ethanol Systems vol.24, pp.9, 2003, https://doi.org/10.5012/bkcs.2003.24.9.1293
  3. Correlation of the Rate of Solvolysis of 2-Chloro-thioacetophenones vol.25, pp.2, 2002, https://doi.org/10.5012/bkcs.2004.25.2.307
  4. Stoichiometric Effects. Correlation of the Rates of Solvolysis of Isopropenyl Chloroformate vol.26, pp.11, 2005, https://doi.org/10.5012/bkcs.2005.26.11.1761
  5. Correlation of the rates of solvolysis of 2-furancarbonyl chloride and three naphthoyl chlorides vol.19, pp.3, 2002, https://doi.org/10.1002/poc.1010
  6. Evaluation of Methylthio and Phenylthio Group Effects in the Solvolyses of 2-Chloro-2-(methylthio)acetone and 2-Chloro-2-(phenylthio)acetophenone Using Extended Grunwald-Winstein Equations vol.29, pp.11, 2002, https://doi.org/10.5012/bkcs.2008.29.11.2145
  7. Correlation of the Rates of Solvolysis of 1- and 2-Naphthyl Chloroformates Using the Extended Grunwald-Winstein Equation vol.32, pp.7, 2002, https://doi.org/10.5012/bkcs.2011.32.7.2413
  8. Further Kinetic Studies of Solvolytic Reactions of Isobutyl Chloroformate in Solvents of High Ionizing Power Under Conductometric Conditions vol.34, pp.2, 2002, https://doi.org/10.5012/bkcs.2013.34.2.615
  9. Evidence for concerted processes in the course of the homoallenylic transposition vol.69, pp.15, 2013, https://doi.org/10.1016/j.tet.2013.02.048