References
- Nomura, S. Analyst 1995, 120, 503. https://doi.org/10.1039/an9952000503
- Wotring, V. J.; Johonson, D. M.; Bachas, L. G. Anal. Chem. 1990, 62, 1506. https://doi.org/10.1021/ac00213a030
- Ozawa, S.; Miyagi, H.; Shibata, Y.; Oki, N.; Kunita, N. T.; Keller, W. E. Anal. Chem. 1995, 68, 4149. https://doi.org/10.1021/ac960526v
- Daunert, S.; Bachas, L. G. Anal. Chem. 1989, 61, 499. https://doi.org/10.1021/ac00180a025
- Schulthess, P.; Ammann, D.; Kraulter, B.; Caderas, C.; Stepane, K. R.; Simon, W. Anal. Chem. 1985, 57, 1397. https://doi.org/10.1021/ac00284a048
- Stepinek, R.; Krautler, B.; Schulthess, P.; Lindemann, B.; Ammonn, D.; Simon, W. Anal. Chim. Acta 1986, 182, 83. https://doi.org/10.1016/S0003-2670(00)82439-3
- Gao, D.; Li, J. Z.; Yu, R. Q. Anal. Chem. 1994, 66, 2245. https://doi.org/10.1021/ac00086a008
- Li, Z. Q.; Yuan, R.; Ying, M.; Song, Y. Q.; Shen, G. L.; Yu, R. Q. Anal. Lett. 1997, 30, 1455. https://doi.org/10.1080/00032719708001667
- Hisamoto, H.; Siswanta, D.; Nishihara, H.; Suzuki, K. Anal. Chim. Acta 1995, 304, 171. https://doi.org/10.1016/0003-2670(94)00614-R
- Rothmaier, M.; Schaller, U.; Morf, W. E.; Pretsch, E. Anal. Chim. Acta 1996, 327, 17. https://doi.org/10.1016/0003-2670(96)00055-4
- Caniotakis, N. A.; Chasser, A. M.; Meyerhoff, M. E. Anal. Chem. 1988, 60, 185. https://doi.org/10.1021/ac00153a020
- Caniotakis, N. A.; Park, S. B.; Meyerhoff, M. E. Anal. Chem. 1989, 61, 566. https://doi.org/10.1021/ac00181a013
- Abe, H.; Kokufuta, E. Bull. Chem. Soc. Jpn. 1990, 63, 1360. https://doi.org/10.1246/bcsj.63.1360
- Daunert, S.; Wallace, S.; Florido, A.; Bachas, L. G. Anal. Chem. 1991, 63, 1676. https://doi.org/10.1021/ac00017a005
- Blair, T. L.; Allen, J. R.; Daunert, S.; Bachas, L. G. Anal. Chem. 1993, 65, 2155. https://doi.org/10.1021/ac00063a039
- Shamsipur, M.; Khayatian, G.; Tangestaninejad, S. Electroanalysis 1999, 18, 1340.
- Amini, M. K.; Shahrokhian, S.; Tangestaninejad, S. Anal. Chim. Acta 1999, 402, 137. https://doi.org/10.1016/S0003-2670(99)00549-8
- Tse, Y. H.; Janda, P.; Lam, H.; Lever, A. B. P. Anal. Chim. 1995, 67, 981. https://doi.org/10.1021/ac00101a028
- Chang, Q.; Meyerhoff, M. E. Anal. Chim. Acta 1986, 186, 81. https://doi.org/10.1016/S0003-2670(00)81776-6
- Suzuki, H.; Nakagawa, H.; Mifune, M.; Saito, Y. Anal. Sci. 1993, 9, 351. https://doi.org/10.2116/analsci.9.351
- Rouhollahi, A.; Shamsipur, M. Anal. Chem. 1999, 71, 1350. https://doi.org/10.1021/ac981077x
- Farhadi, K. H.; Maleki, R.; Shamsipur, M. Electroanalysis 2002, 14, 760. https://doi.org/10.1002/1521-4109(200206)14:11<760::AID-ELAN760>3.0.CO;2-Q
- ta, S.; Bhale, A.; Fukunaga, Y.; Murata, H. Anal. Chem. 1988, 60, 2465.
- Malinowska, E.; Meyerhoff, M. E. Anal. Chim. Acta 1995, 300, 33. https://doi.org/10.1016/0003-2670(94)00407-D
- Brown, D. V.; Chaniotakis, N. A.; Lee, H. I.; Ma, S. C.; Park, S. B.; Meyerhoff, M. E.; Nick, I. J.; Groves, J. T. Electroanalysis 1989, 1, 477. https://doi.org/10.1002/elan.1140010602
- Buhlmann, P.; Pretsch, E.; Bakker, E. Chem. Rev. 1998, 98, 1593. https://doi.org/10.1021/cr970113+
- Bakker, E.; Buhlmann, P.; Prestch, E. Chem. Rev. 1997, 97, 3033.
- Shamsipur, M.; Kazemi, S. Y.; Niknam, K.; Sharghi, H. Bull. Korean Chem. Soc. 2002, 23, 53. https://doi.org/10.5012/bkcs.2002.23.1.053
- Kirn, W.; Sung, D. D.; Clia, G. S.; Park, S. B. Analyst 1998, 123, 379. https://doi.org/10.1039/a705788a
- Christian, G. D. In Analytical Chemistry; Willey & Sons: New York, 1986.
- Gadzepko, V. P.; Christian, G. D. Anal. Chim. Acta 1984, 164, 279. https://doi.org/10.1016/S0003-2670(00)85640-8
- Umezawa, Y.; Umezawa, K.; Sato, H. Pure Appl. Chem. 1995, 67, 507. https://doi.org/10.1351/pac199567030507
- Bakker, E. Electroanalysis 1997, 9, 7. https://doi.org/10.1002/elan.1140090103
- Baily, P. L. In Analysis with Ion-Selective Electrodes; Heyden, London, 1996.
- Hofmeister, P. Arch. Exp. Pathol. Pharmacol. 1888, 24, 247. https://doi.org/10.1007/BF01918191
Cited by
- Construction of Triiodide Ion Selective Electrodes Based on Phenothiazine Derivatives vol.37, pp.6, 2004, https://doi.org/10.1081/AL-120034053
- Highly Selective and Sensitive Triiodide PVC‐Based Membrane Electrode Based on a New Charge Transfer Complex of 2‐(((2‐(((E)‐1‐(2‐Hydroxyphenyl) Methylidine) Amino) Phenyl) Imino) Methyl) Phenol for Nano‐Level Monitoring of Triiodide vol.39, pp.4, 2006, https://doi.org/10.1080/00032710600610816
- Supramolecular Based Membrane Sensors vol.6, pp.8, 2006, https://doi.org/10.3390/s6081018
- Central Composite Design Applied to the Optimization of a Triiodide Polymeric Membrane Electrode based on Triiodide-Piroxicam Ion Pair vol.41, pp.11, 2008, https://doi.org/10.1080/00032710802209318
- Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade vol.8, pp.4, 2008, https://doi.org/10.3390/s8042331
- PVC-based Cu (II)-Schiff base complex membrane coated graphite electrode for the determination of the triiodide ion vol.61, pp.7, 2006, https://doi.org/10.1134/S1061934806070136
- Synthesis of a charge-transfer complex of (1,3-diphenyldihydro-1H-imidazole)-4,5-dione dioxide with iodide and its application to the development of a highly selective and sensitive triiodide PVC-membrane electrode vol.62, pp.3, 2007, https://doi.org/10.1134/S106193480703015X
- Reusable Porphyrinatoiron(III) Complex Supported on Activated Silica as an Efficient Heterogeneous Catalyst for a Facile, One-Pot, Selective Synthesis of 2-Arylbenzimidazole Derivatives in the Presence of Atmospheric Air as a “Green” Oxidant at Ambient Temperature vol.2008, pp.24, 2008, https://doi.org/10.1002/ejoc.200800351
- Immobilization of Porphyrinatocopper Nanoparticles onto Activated Multi-Walled Carbon Nanotubes and a Study of its Catalytic Activity as an Efficient Heterogeneous Catalyst for a Click Approach to the Three-Component Synthesis of 1,2,3-Triazoles in Water vol.351, pp.14-15, 2009, https://doi.org/10.1002/adsc.200900353
- [Tetrakis(4-N,N-dimethylaminobenzene)porphyrinato]manganese(III) Acetate as a Novel Carrier for a Selective Iodide PVC Membrane Electrode vol.20, pp.5, 2002, https://doi.org/10.2116/analsci.20.805
- Novel triiodide ion-selective polymeric membrane sensor based on mercury-salen vol.105, pp.2, 2002, https://doi.org/10.1016/s0925-4005(03)00625-7
- Highly Selective and Sensitive Triiodide PVC-Membrane Electrode Based on a New Charge-Transfer Complex of Bis(2,4-Dimethoxybenzaldehyde)butane-2,3-Dihydrazone with Iodine vol.53, pp.2, 2002, https://doi.org/10.1002/jccs.200600033
- Triiodide Ion-Selective Electrode Based on Charge-Transfer Complex of 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo-[8.8.8]hexacosane vol.53, pp.5, 2002, https://doi.org/10.1002/jccs.200600150
- Sequential Flow Injection Determination of Chlorine Species Using a Triiodide-selective Electrode Detector vol.22, pp.1, 2002, https://doi.org/10.2116/analsci.22.45
- Flow injection determination of peroxide value in edible oils using triiodide detector vol.565, pp.2, 2002, https://doi.org/10.1016/j.aca.2006.02.039
- Ketoconazol-Triiodide Ion Pair Complex as a Suitable Carrier in an Iodide Selective Membrane Electrode vol.54, pp.3, 2007, https://doi.org/10.1002/jccs.200700100
- Oxalate membrane-selective electrode based on surfactant-modified zeolite vol.56, pp.22, 2002, https://doi.org/10.1016/j.electacta.2011.02.069