DOI QR코드

DOI QR Code

Synthesis and Characterization of Thermosensitive Poly(organophosphazenes) with Methoxy-Poly(ethylene glycol) and Alkylamines as Side Groups


Abstract

Thermosensitive poly(organophosphazenes) bearing methoxy-poly(ethylene glycol) (MPEG) and alkylamines as substituents have been synthesized and characterized by elemental analysis, NMR spectroscopy, GPC, and DSC. All the polymers exhibited crystallinity, which was probably induced by the MPEG side chain of the polymers. All the polymers exhibited the lower critical solution temperature (LCSTs) in the range of 28 to $94^{\circ}C$ depending on several factors such as mole ratio of the substituents, kinds of PEG and alkylamines. The higher content of MPEG and shorter chain length of alkylamines of the polymers afforded the higher LCST. The LCSTs of the polymers exhibited almost concentration-independent behavior in the range of 3-30 wt % of the polymers in aqueous solutions. The polymers showed the higher LCSTs in the acidic solutions than in the neutral and basic solutions. The ionic strength of the polymer solution affected the LCST, which decreased with increased NaCl concentration. The polymer bearing almost equimolar substitutuents with the -N-P-N- unit has shown the LCST more sensitive to NaCl and pH than that with the -N-P-O- unit. The polymers were found to degrade in acidic solution but be very stable in alkali solution as well as in the buffer solution of pH 7.4.

Keywords

References

  1. Chen, G.; Hoffman, A. S. Nature 1995, 373, 5.
  2. Jeong, B.; Bae, Y. H.; Lee, D. S.; Kim, S. W. Nature 1997, 388,28.
  3. Shtanko, N. I.; Kabanov, V. Y.; Apel, P. Y.; Yoshida, M.; Vilenskii,A. I. J. Membrane Sci. 2000, 179, 155. https://doi.org/10.1016/S0376-7388(00)00494-4
  4. Peppas, N. A.; Langer, R. Science 1994, 263, 1715. https://doi.org/10.1126/science.8134835
  5. Recum, A.; Kim, S. W.; Kikuchi, A.; Okuhara, M.; Sakurai, Y.;Okano, T. J. Biomed. Mater. Res. 1998, 40, 631. https://doi.org/10.1002/(SICI)1097-4636(19980615)40:4<631::AID-JBM15>3.0.CO;2-I
  6. Monji, N.; Hoffman, A. S. Appl. Biochem. Biotechnol. 1987, 14,107. https://doi.org/10.1007/BF02798429
  7. Park, T. G.; Hoffman, A. S. J. Biomater. Sci. Polymer Edn. 1993,5, 493.
  8. Tanigami, T.; Ono, T.; Suda, N.; Sakamaki, Y.; Yamaura, K.;Matsuzawa, S. Macromolecules 1989, 22, 1397. https://doi.org/10.1021/ma00193a065
  9. Allcock, H. R.; Pucher, S. R.; Turner, M.; Fitzpatrick, R.Macromolecules 1992, 25, 5573. https://doi.org/10.1021/ma00047a002
  10. Allcock, H. R.; Dudley, G. K. Macromolecules 1996, 29, 1313. https://doi.org/10.1021/ma951129+
  11. Chen-Yang, Y. W.; Hwang, J. J.; Huang, A. Y. Macromolecules2000, 33, 1237. https://doi.org/10.1021/ma991080y
  12. Lee, S. B.; Song, S.-C.; Jin, J.-L.; Sohn, Y. S. J. Am. Chem. Soc.2000, 122, 8315. https://doi.org/10.1021/ja001542j
  13. Song, S.-C.; Lee, S. B.; Jin, J.-L.; Sohn, Y. S. Macromolecules1999, 32, 2188. https://doi.org/10.1021/ma981190p
  14. Loccufier, J.; Crommen, J.; Vandorpe, J.; Schacht, E. Makromol.Chem. Rapid. Commun. 1991, 12, 159. https://doi.org/10.1002/marc.1991.030120303
  15. Sohn, Y. S.; Cho, Y. H.; Baek, H.-G.; Jung, O.-S. Macromolecules1995, 28, 7566. https://doi.org/10.1021/ma00126a039
  16. Cho, Y. H.; Baek, H.-G.; Jung, O.-S.; Jun, M.-J.; Sohn, Y. S. Bull.Korean Chem. Soc. 1996, 17, 85.
  17. Vandrope, J.; Schacht, E. Polymer 1996, 37, 3141. https://doi.org/10.1016/0032-3861(96)89416-X
  18. Horne, R. A.; Almeida, J. P.; Day, A. F.; Yu, N. T. J. Colloid Interf.Sci. 1971, 35, 77. https://doi.org/10.1016/0021-9797(71)90187-1
  19. Taylor, L. D.; Cerankowski, L. D. J. Polym. Sci. 1975, 13, 2551.
  20. Allcock, H. R.; Pucher, S. R.; Scopelianos, A. G. Macromolecules1994, 27, 1071. https://doi.org/10.1021/ma00083a001
  21. Lee, S. B.; Song, S.-C.; Jin, J.-L.; Sohn, Y. S. Macromolecules1999, 32, 7820. https://doi.org/10.1021/ma990645n
  22. Allcock, H. R.; Fuller, T. J.; Matsumura, K. Inorg. Chem. 1982,21, 515. https://doi.org/10.1021/ic00132a009

Cited by

  1. Salt-Induced Thermoresponsivity of Cross-Linked Polymethoxyethylaminophosphazene Hydrogels: Energetics of the Volume Phase Transition vol.122, pp.6, 2018, https://doi.org/10.1021/acs.jpcb.7b11288
  2. Salt-Induced Thermoresponsivity of a Cationic Phosphazene Polymer in Aqueous Solutions vol.51, pp.20, 2018, https://doi.org/10.1021/acs.macromol.8b01621
  3. Binding Energetics of Charged Amphiphilic Ligands to Thermoresponsive Biodegradable Poly(methoxyethylaminophosphazene) Hydrogels vol.35, pp.51, 2002, https://doi.org/10.1021/acs.langmuir.9b03204