DOI QR코드

DOI QR Code

An Analytical Solution of the Schrodinger Equation for a Rectangular Barrier with Time-Dependent Position

  • Published : 2002.02.20

Abstract

Keywords

References

  1. Paul, W. Rev. Mod. Phys. 1990, 62, 531 https://doi.org/10.1103/RevModPhys.62.531
  2. Roy, D. K. Quantum Mechanical Tunneling And Its Application; World Scientific: Singapore, 1986
  3. Truscott, W. S. Phys. Rev. Lett. 1993, 70, 1900 https://doi.org/10.1103/PhysRevLett.70.1900
  4. Lewis, Jr., H. R. J. Math. Phys. 1968, 9, 1976 https://doi.org/10.1063/1.1664532
  5. Yeon, K. H.; Kim, D. H.; Um, C. I.; George, T. F.; Pandey, L. N. Phys. Rev. A 1997, 55, 4023 https://doi.org/10.1103/PhysRevA.55.4023
  6. Feng, M. Phys. Rev. A 2001, 64, 034101-1 https://doi.org/10.1103/PhysRevA.64.034101
  7. Truax, D. R. J. Math. Phys. 1982, 23, 43 https://doi.org/10.1063/1.525205
  8. Wagner, M., Phys. Rev. B 1994, 49, 16544; Wagner, M. Phys. Rev. Lett. 1996, 76, 4010 https://doi.org/10.1103/PhysRevLett.76.4010
  9. Vorobeichik, I.; Lefebvre, R.; Moiseyev, N. Europhys. Lett. 1998, 41, 111 https://doi.org/10.1209/epl/i1998-00117-6
  10. Henneberger, W. C. Phys. Rev. Lett. 1968, 21, 838 https://doi.org/10.1103/PhysRevLett.21.838

Cited by

  1. Exact solutions of Feinberg–Horodecki equation for time-dependent anharmonic oscillator vol.80, pp.1, 2013, https://doi.org/10.1007/s12043-012-0358-6
  2. Class of invariants for a time dependent linear potential vol.87, pp.10, 2013, https://doi.org/10.1007/s12648-013-0322-4
  3. Airy wave packet for a particle in a time-dependent linear potential vol.70, pp.2, 2017, https://doi.org/10.3938/jkps.70.119
  4. Exactly Solvable Time-Dependent Problems: Potentials of Monotonously Decreasing Function of Time vol.23, pp.12, 2002, https://doi.org/10.5012/bkcs.2002.23.12.1733