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An analytical solution for the Schrodinger equation with 
time-dependent potential has been investigated extensively 
over past decades. In addition to its own mathematical 
interest, this problem has wide applications in many areas of 
physics, such as laser-induced dynamics, the motion of Paul 
trap ions,1 and semiconductor physics.2 Only systems with 
time-dependent potentials that are constant, linear, and quadratic 
in x are known to be analytically solved.3

For these problems, the well known methods for analytical 
wave functions are the famous invariant operator approach,4 
the propagator method,5 and the time-space transformation 
method.6 In general, systems with potentials of V(x, t)= 
f(t)x2 + g(t)x + h(t) has been solved exactly by these 
methods7. Among these systems, rectangular potentials with 
time-dependent height or depth are quite simple to solve.8 A 
rectangular barrier with time-dependent position is, however, 
much more complex and the Schrodinger equation has not 
yet been solved analytically, although Moiseyev9 studied the 
problem approximately by averaging the potential in time 
and by treating it as a time-independent bound system.

In the present work, we obtain the exact solution for the 
rectangular barrier whose position is oscillating in time. We 
use the Kramers-Henneberger transformation1o which is a 
particular form of time-space transformation technique.

The Hamiltonian for the rectangular barrier with oscillating 
position is chosen as9

written as follows3

where

2
H( x, t) = p + V( x, t), 

2m (1)

V(x, t)= <

r , ，一 시Vo, if \x + aocos at\ < 2
(2)

0, elsewhere

The position of the barrier oscillates with the frequency 
a=2n/T so that at t = 0 the barrier is centered at x = -ao, 
and at t = T/2 its center is at x = +ao. The Hamiltonian with 
the potential V(x, t) of eq. (2) is obtained from H = p이'2m + 
V(x) + Eoxcosat by Kramers-Henneberger transformation,10 
where ao=Eo/ma2. This Hamiltonian represents the system 
under the field Eoxcos 飮.

If we introduce a new variable, g(x, t) = x + aocosat, 
following the Kramers-Henneberger transformation,1o the 
time-dependent wave function of the system,甲(x, t), can be

iEt
甲(x, t) = e「T 臥 g, t)x(x, t), (3)

where E is a constant parameter which could be the energy 
of the system. Inserting 甲(x, t) of eq. (3) into time-dependent 
Schrodinger equation and changing x to g, we have

hf趣2衲X
-WE +

= h薦쩞+d*+*-幼+%)].

Since the potential V(g) in eq. (4) does not depend on t 
explicitly, *g, t) would be a time-independent solution if the 
following relation is satisfied:

魏2礬+心

Eq. (4) then becomes

IO V(g) -D心 t) = ih尊 t)

2m g t

Solutions of eq. (6) would be e±C1g, where ci= ik or % 

(k=J2mE/h), ( k=J2m( V°- E)/h), depending on the 
region of x.

Substituting dg/dt=-(p(t)/m) and *(g) =eCig into eq.
(5) and then rearranging it, we have

2m A 牴-驾t)% = -^多.

To determine the solution, we factorize %(x, t) as %(x, t) 
=u(t)u(x) since the eq. (7) is not coupled in x and t. Inserting 
%(x, t) into eq. (7) and then dividing both sides by u(t)u(x), 
we obtain,

h 1 d2 u hci 1 du /1 du c+ = -i -
2mVdx m udx ku dt

Since the left-hand side is a function of x only, while the 
right-hand side is a function of t, we let both sides equal to c2 

which is a constant. Thus we have u(t) as given below,

ic2t + 으-; p(t'、)dt'
mJ

u( t) = e = e

2m + V(g)所

聋*

ic2 - CiOocosat

(4)

(5)

(6)

(7)

(8)

(9)

The left-hand side would be an ordinary second-order 
differential equation for ^(x) as,
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h d2v hc、du 八
2m源+ m dx -c2V = 0. (10)

Inserting ^(x) = e"(x) into eq. (10), we obtain the equation 
for 尢(x) given as, 

h 
2 m

,hcd為 八

+ mdx - c2 = 0. (11)

If we define d入Jdx = w(x) and insert it into eq. (11), we 
finally have the first-order differential equation for w(x) as 
given below,

hdw - . hcL, H,2

2m dx 2 m 2m , (12)

which can be easily solved by integrating the equation given 
as,

?。2-2c1W - w2) dw = (13)dx.

Integrating eq. (13), we would have

v _ 2 2(c1 + w)x = — __ — __
J二A T-A .

="1已+ W)), 
"A I ”A 丿

△ < 0

A> 0, (14)

where A=-4(2m/ h c? + c2) . Determining w(x) from eq. 
(14) and integrating it again, we have A(x) as given below,

A(x) = l^cosh^-^-Ax)]-c1 x, A < 0 

=ln[cos(籍 x)] -c1 x,
A> 0. (15)

From u(x) = e 為x), we get

u(x) = cosh^-^-Ax)e~c'x, A< 0

=cos("2x)e"c1x, A > 0 . (16)

Thus we have 人(x, t) as

x( x, t) = e 心-旋*"' cosh(-p x) e", A< 0

=e©1 - ggw。。、(亍乂) e「c1x, A> 0 . (17)

Inserting x(x, t) from eq. (17) and @(g, t) which is e±c1^ into 
eq. (3), we can exactly determine 貝x, t) for the system of 
rectangular barrier with the oscillating position.
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