DOI QR코드

DOI QR Code

Synthesis and Liquid Crystalline Properties of Hyperbranched Aromatic Polyesters Consisting of Azoxybenzene Mesogens and Polymethylene Spacers


Abstract

A new series of hyperbranched aromatic polyesters containing azoxybenzene mesogens and polymethylene spacers were prepared by polymerizing AB2 type monomers that have the isophthaloyl dicarboxylic acid terminal at one end and the p-oxyp henol terminal at the other end. The monomers contain a built-in azoxybenzene mesogen that is linked to the terminal groups through polymethylene spacers. The polyesters prepared were characterized by solution viscosity, differential scanning calorimetry, X-ray diffractometry and polarizing microscopy. All of the polyesters were found to be thermotropic (nematic). Their glass-transition temperatures and mesophase temperature ranges were very sensitive to the length of the two spacers existing in the repeating unit. The degree of branching of one of the polyesters was determined by the NMR spectroscopy and found to be 0.56.

Keywords

References

  1. Lenz, R. W.; Jin, J.-I. Macromolecules 1981, 14, 1405. https://doi.org/10.1021/ma50006a050
  2. Ober, C. K.; Jin, J.-I.; Zhou, Q.-F.; Lenz, R. W. Adv. Polym. Sci. 1984, 59, 102.
  3. Kricheldorf, H. R.; Englhardt, J. J. Polym. Sci. Chem. Ed. 1990, 28, 2335. https://doi.org/10.1002/pola.1990.080280909
  4. Jin, J.-I.; Antoun, S.; Ober, C. K.; Lenz, R. W. Br. Polym. J. 1980, 12, 132.
  5. Jin, J.-I.; Choi, E.-J.; Jo, B.-W. Macromolecules 1987, 20, 934. https://doi.org/10.1021/ma00171a006
  6. Vogit-Martin, I. G.; Simon, P.; Bauer, S.; Ringsdorf, H. Macromolecules 1995, 28, 236. https://doi.org/10.1021/ma00105a031
  7. Kricheldorf, H. R.; Domschke, A.; Schwarz, G. Macromolecules 1991, 24, 1011. https://doi.org/10.1021/ma00005a007
  8. Noh, H.-G.; Shim, H.-K.; Chang, J.-H.; Jin, J.-I. Macromolecules 1997, 30, 1521. https://doi.org/10.1021/ma961004k
  9. Krishnamurthy, S.; Chen, S. H.; Blaton, T. N. Macromolecules 1992, 25, 5119. https://doi.org/10.1021/ma00046a001
  10. Davidson, P.; Levelut, A. M.; Archard, M. F.; Hardouin, F. Liq. Cryst. 1989, 4, 561. https://doi.org/10.1080/02678298908033191
  11. Fischer, H.; Poser, S.; Arnold, M.; Frank, W. Macromolecules 1994, 27, 7133. https://doi.org/10.1021/ma00102a021
  12. Diele, S.; Naumann, M.; Kuschel, F.; Reck, B.; Ringsdorf, H. Liq. Cryst. 1990, 7, 721. https://doi.org/10.1080/02678299008036753
  13. Kim, S.; Sohn, J.; Park, S.Y. Bull. Korean Chem. Soc. 1999, 20, 474.
  14. Frechet, J. M. J. Science 1994, 263, 1710. https://doi.org/10.1126/science.8134834
  15. Advances in Dendritic Macromolecules; Newkome, G. R., Ed.; JAI: Greenwich, 1994; Vol. 1.
  16. Pesak, D. J.; Moore, J. S.; Wheat, T. E. Macromolecules 1997, 30, 6467. https://doi.org/10.1021/ma970454p
  17. Kambouris, P.; Hawker, C. J. J. Chem. Soc., Perkin Trans 1 1993, 2717.
  18. Gaynor, S. G.; Edelman, S.; Matyjaszewski, K. Macromolecules 1996, 29, 1079. https://doi.org/10.1021/ma9513877
  19. Lee, J.-H.; Lee, K.-S. Bull. Korean Chem. Soc. 2000, 21, 847.
  20. Aoi, K.; Itho, K.; Okada, M. Macromolecules 1995, 28, 5391. https://doi.org/10.1021/ma00119a037
  21. Knapen, J. W. J.; Van der Made, A. W.; De Wilde, J. C.; Van Leuwen, P. W. N. M.; Wijkens, P.; Van Koten, G. Nature 1994, 372, 659. https://doi.org/10.1038/372659a0
  22. Sadamoto, R.; Tomioka, N.; Aida, T. J. Am. Chem. Soc. 1996, 118, 3978. https://doi.org/10.1021/ja952855v
  23. Cherestes, A.; Engel, R. Polymer 1994, 35, 3343. https://doi.org/10.1016/0032-3861(94)90146-5
  24. Mak, C. C.; Chow, H.-F. Macromolecules 1997, 30, 1228. https://doi.org/10.1021/ma961281r
  25. Newkome, G. R.; Baker, G. R.; Vogtle, F. Dendritic Molecules: Concepts, Syntheses, Perspectives; VCH: Weinheim, Germany, 1996.
  26. Percec, V.; Kawasumi, M. Macromolecules 1992, 25, 3843. https://doi.org/10.1021/ma00041a004
  27. Percec, V.; Chu, P.; Kawasumi, M. Macromolecules 1994, 27, 4441. https://doi.org/10.1021/ma00094a005
  28. Percec, V.; Cho, C. G.; Pugh, C.; Tomazos, D. Macromolecules 1993, 26, 963. https://doi.org/10.1021/ma00057a013
  29. Percec, V.; Chu, P.; Ungar, G.; Zhou, J. J. Am. Chem. Soc. 1995, 117, 11441. https://doi.org/10.1021/ja00151a008
  30. Percec, V.; Schlueter, D.; Ungar, G.; Cheng, S. Z. D.; Zhang, A. Macromolecules 1998, 31, 1745. https://doi.org/10.1021/ma971459p
  31. Percec, V.; Cho, W.-D.; Mosier, P. E.; Ungar, G.; Yeardley, D. J. P. J. Am. Chem. Soc. 1998, 120, 11061. https://doi.org/10.1021/ja9819007
  32. Percec, V.; Ahn, C.-H.; Ungar, G.; Yeardley, D. J. P.; Moller, M.; Sheiko, S. S. Nature 1998, 391, 161. https://doi.org/10.1038/34384
  33. Percec, V.; Johansson, G.; Ungar, G.; Zhou, J. J. Am. Chem. Soc. 1996, 118, 9855. https://doi.org/10.1021/ja9615738
  34. Hahn, S.-W.; Yun, Y.-K.; Jin, J.-I. Macromolecules 1998, 31, 6417. https://doi.org/10.1021/ma971812r
  35. Choi, S.-H.; Lee, N.-H.; Cha, S. W.; Jin, J.-I. Macromolecules 2001, 34, 2138. https://doi.org/10.1021/ma0014665
  36. Leonard, N. R.; Curry, J. W. J. Org. Chem. 1952, 17, 1071. https://doi.org/10.1021/jo50008a001
  37. Higashi, F. In New Methods for Polymer Synthesis; Mijs, W. J., Ed.; Plenum Press: New York, 1992; p 230.
  38. Fang, J.; Kita, H.; Okamoto, K. Macromolecules 2000, 33, 4639. https://doi.org/10.1021/ma9921293
  39. Kricheldorf, H. R.; Stöber, O.; Lübbers, D. Macromolecules 1995, 28, 2118. https://doi.org/10.1021/ma00111a003
  40. Knauss, D. M.; Al-Muallem, H. A.; Huang, T.; Wu, D. T. Macromolecules 2000, 33, 3557. https://doi.org/10.1021/ma991509l
  41. Hawker, C. J.; Lee, R.; Frechet, J. M. J. J. Am. Chem. Soc. 1991, 113, 4583. https://doi.org/10.1021/ja00012a030
  42. Turner, S. R.; Voit, B. I.; Mourey, T. H. Macromolecules 1993, 26, 4617. https://doi.org/10.1021/ma00069a031
  43. Turner, S. R.; Walter, F.; Voit, B. I.; Mourey, T. H. Macromolecules 1994, 27, 1611. https://doi.org/10.1021/ma00084a051
  44. Sunder, A.; Hanselmann, R.; Frey, H.; Mulhaupt, R. Macromolecules 1999, 32, 4240. https://doi.org/10.1021/ma990090w
  45. Jin, J.-I.; Kang, C.-S.; Lee, I.-H.; Yun, Y.-K. Macromolecules 1994, 27, 2664. https://doi.org/10.1021/ma00088a003
  46. Jin, J.-I.; Kang, C.-S.; Lee, I.-H. Polym. Preprints (ACS) 1992, 33, 233.
  47. Jin, J.-I. Mol. Cryst. Liq. Cryst. 1994, 254, 197. https://doi.org/10.1080/10587259408036076

Cited by

  1. Synthesis and characterization of a novel hyperbranched polyether vol.53, pp.12, 2004, https://doi.org/10.1002/pi.1622
  2. Extrem verzweigte Polymere: ein einzigartiges Hilfsmittel für den Entwurf neuer Lacke und Anstriche vol.89, pp.4, 2006, https://doi.org/10.1007/BF02765586
  3. Silver nanoparticle in hyperbranched polyamine: Synthesis, characterization and antibacterial activity vol.112, pp.3, 2008, https://doi.org/10.1016/j.matchemphys.2008.07.047
  4. 직접중축합법에 의한 하이퍼브랜치 액정 폴리에스터의 합성 및 성질 vol.28, pp.2, 2017, https://doi.org/10.14478/ace.2017.1006
  5. A Review on the Application of Poly(amidoamine) Dendritic Nano-polymers for Modification of Cellulosic Fabrics vol.13, pp.2, 2002, https://doi.org/10.2174/2405520412666191019101828