References
- J. Phys. Chem. v.99 E. Herrero;W. Chrzanowski;A. Wieckowski https://doi.org/10.1021/j100025a054
- J. Phys. Chem. v.99 W. Vielstich;X. H. Xia https://doi.org/10.1021/j100025a053
- J. Electroanal. Chem. v.257 R. Parsons;T. J. VanderNoot https://doi.org/10.1016/0022-0728(88)87028-1
- J. Electrochem. Soc. v.141 H. A. Gasteiger;N. M. Markovic;P. N. Ross, et al https://doi.org/10.1149/1.2055007
- J Phys Chem. v.97 H. A. Gasteiger;N. M. Markovic;P. N. Ross https://doi.org/10.1021/j100148a030
- Electrochim Acta v.39 H. A. Gasteiger;N. M. Markovic;P. N. Ross https://doi.org/10.1016/0013-4686(94)85171-9
- J. Electroanal. Chem. v.379 M. Krausa;W. Vielstich https://doi.org/10.1016/0022-0728(94)87152-3
- J. Electroanal. Chem. v.258 E. Ticanelli;J. G. Beery;M. T. Paffett, et al https://doi.org/10.1016/0022-0728(89)85162-9
- J. Am. Chem. Soc. v.119 C. E. Lee;P. B. Tiege;Y. Xing, et al https://doi.org/10.1021/ja963163p
- In Principles of Adsorption and Reaction of Solid Surfaces R. I. Masel
- J. Electroanal. Chem. v.60 M. Watanabe;S. Motoo https://doi.org/10.1016/S0022-0728(75)80261-0
- Catal. Today v.67 G. Chen;D. A. Delafuente;S. Sarangapani https://doi.org/10.1016/S0920-5861(01)00327-3
- J. Phys. Chem. v.101 Z. Q. Tian;B. Ren;B. W. Mao, et al
- Surf. Sci. v.406 W. B. Cai;B. Ren;F. M. Liu, et al https://doi.org/10.1016/S0039-6028(97)01030-3
- Appl. Phys. Lett. v.72 B. Ren;F. M. Liu;J. Xie, et al https://doi.org/10.1063/1.120877
- Ber. Buns. Phys. Chem. v.94 T. Iwasita;F. C. Nart;W. Vielstich https://doi.org/10.1002/bbpc.19900940930
- Surf. Sci. v.293 H. A. Gasteiger;P. N. Ross;E. J. Cairns https://doi.org/10.1016/0039-6028(93)90244-E
- Surf. Sci. v.335 F. Richarz;B. Wohlmann;U. Vogel;H. Hoffschulz;K. Wandelt https://doi.org/10.1016/0039-6028(95)00461-0
- Langmuir v.13 W. Chrzanowski;A. Wieckowski
- J. Electroanal. Chem. v.230 S. Szabo;I. Bakos https://doi.org/10.1016/0022-0728(87)80145-6
- J. Electroanal. Chem. v.127 B. Beden;F. Kairgan;C. Lamy, et al https://doi.org/10.1016/S0022-0728(81)80469-X
- J. Anal. Chem. v.358 S. Cramm;K. A. Friedrich;K. P. Geyzers, et al https://doi.org/10.1007/s002160050380
- Spectroscopy for Surface Science - Advances in Spectroscopy M. J. Weaver;S. Z. Zou;In Clark R J H;Hester R E (Eds.)
- J. Chem. Phys. v.99 no.1 J. Z. Xu;Jr. J. Yates https://doi.org/10.1063/1.465745
Cited by
- Electrooxidation Mechanism of Methanol at Pt-Ru Catalyst Modified GC Electrode in Electrolytes with Different pH Using Electrochemical and SERS Techniques vol.25, pp.11, 2007, https://doi.org/10.1002/cjoc.200790299
- In Situ Surface-Enhanced Raman Spectroscopy Study of the Electrocatalytic Effect of PtFe/C Nanocatalyst on Ethanol Electro-Oxidation in Alkaline Medium vol.10, pp.3, 2017, https://doi.org/10.3390/en10030290
- Spectroelectrochemical flow cell with temperature control for investigation of electrocatalytic systems with surface-enhanced Raman spectroscopy vol.140, 2009, https://doi.org/10.1039/B803366H
- ADSORPTION AND REACTION AT ELECTROCHEMICAL INTERFACES AS PROBED BY SURFACE-ENHANCED RAMAN SPECTROSCOPY vol.55, pp.1, 2004, https://doi.org/10.1146/annurev.physchem.54.011002.103833
- In Situ Surface-Enhanced Raman Spectroscopic Studies of CO Adsorption and Methanol Oxidation on Ru-Modified Pt Surfaces vol.111, pp.51, 2007, https://doi.org/10.1021/jp075929l