신경망 AE 신호 형상인식을 위한 특징값 선택법의 개발과 용접부 및 회전체 결함 분류에의 적용 연구

Development of Feature Selection Method for Neural Network AE Signal Pattern Recognition and Its Application to Classification of Defects of Weld and Rotating Components

  • 발행 : 2001.02.28

초록

음향방출 신호를 이용하여 분류기를 설계하는 과정에서의 특징값 선택법에 관해 연구하였다. 분류기는 역전파법을 이용한 신경망 분류기를 사용하였다. Fisher's criterion, class mean scatter criterion, eigenvector analysis와 함께 본 논문에서 새로 제안하는 특징값 공간에서의 특징값 좌표사이의 차이를 이용하는 2-D criterion, 3-D criterion을 이용해서 특징값을 선택하고 각각에 대해 분류기를 설계하여, 인식률과 수렴속도를 비교하였다. 분류를 위한 자료를 얻기 위하여 용접부 결함시편과 로터리 압축기 금속 접촉부 결함시편을 사용하였다. 인식률 면에서 2-D criterion과 3-D criterion이 우수한 결과를 나타내었다.

The purpose of this paper is to develop a new feature selection method for AE signal classification. The neural network of back propagation algorithm is used. The proposed feature selection method uses the difference between feature coordinates in feature space. This method is compared with the existing methods such as Fisher's criterion, class mean scatter criterion and eigenvector analysis in terms of the recognition rate and the convergence speed, using the signals from the defects in welding zone of austenitic stainless steel and in the metal contact of the rotary compressor. The proposed feature selection methods such as 2-D and 3-D criteria showed better results in the recognition rate than the existing ones.

키워드