• Title/Summary/Keyword: 신호 형상인식

Search Result 26, Processing Time 0.02 seconds

Intelligence Package Development for UT Signal Pattern Recognition and Application to Classification of Defects in Austenitic Stainless Steel Weld (UT 신호형상 인식을 위한 Intelligence Package 개발과 Austenitic Stainless Steel Welding부 결함 분류에 관한 적용 연구)

  • Lee, Kang-Yong;Kim, Joon-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.4
    • /
    • pp.531-539
    • /
    • 1996
  • The research for the classification of the artificial defects in welding parts is performed using the pattern recognition technology of ultrasonic signal. The signal pattern recognition package including the user defined function is developed to perform the digital signal processing, feature extraction, feature selection and classifier selection. The neural network classifier and the statistical classifiers such as the linear discriminant function classifier and the empirical Bayesian classifier are compared and discussed. The pattern recognition technique is applied to the classification of artificial defects such as notchs and a hole. If appropriately learned, the neural network classifier is concluded to be better than the statistical classifiers in the classification of the artificial defects.

  • PDF

Recognition method of stripe waves projected to bodies using HMM (인체에 투사된 스트라이프 파형의 HMM을 이용한 인식방안)

  • Seok Hyun-tack;Kwak Kyung-sup
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.1
    • /
    • pp.51-58
    • /
    • 2005
  • we can set laser patterns with 3D information from vision camera after projected to object with laser stripes. They are very useful for 3-Dimensional informations. We researched the laser patterns of human body projected by stripes and found out three featuring patterns and made database of patterns using Fourier descriptors to recognize the patterns of bodies. The HMM method and Fourier descriptors to recognize human body were experimented. We found out HMM method can recognize human body in more efficient rate than the other.

A Study on the Application of Digital Signal Processing for Pattern Recognition of Microdefects (미소결함의 형상인식을 위한 디지털 신호처리 적용에 관한 연구)

  • 홍석주
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.119-127
    • /
    • 2000
  • In this study the classified researches the artificial and natural flaws in welding parts are performed using the pattern recognition technology. For this purpose the signal pattern recognition package including the user defined function was developed and the total procedure including the digital signal processing feature extraction feature selection and classifi-er selection is teated by bulk,. Specially it is composed with and discussed using the statistical classifier such as the linear discriminant function the empirical Bayesian classifier. Also the pattern recognition technology is applied to classifica-tion problem of natural flaw(i.e multiple classification problem-crack lack of penetration lack of fusion porosity and slag inclusion the planar and volumetric flaw classification problem), According to this result it is possible to acquire the recognition rate of 83% above even through it is different a little according to domain extracting the feature and the classifier.

  • PDF

Development of Adaptive Signal Pattern Recognition Program and Application to Classification of Defects in Weld Zone by AE Method (적응형 신호 형상 인식 프로그램 개발과 AE법에 의한 용접부 결함 분류에 관한 적용 연구)

  • Lee, K.Y.;Lim, J.M.;Kim, J.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.1
    • /
    • pp.34-45
    • /
    • 1996
  • The signal pattern recognition program which can perform signal acquisition and processing, the extraction and selection of features, the classifier design and the evaluation, is developed and applied to the classification of artificial defects in the weld zone of Austenitic STS304. The neural network classifier is compared with the linear discriminant function classifier and the empirical Bayesian classifier. The signal through a broadband sensor is compared with that through a resonance type sensor. In recognition rate, the neural network classifier is best, and the signal through a broadband sensor is better.

  • PDF

The Classification of U.T Defects in the Pressure Vessel Weld using the Pattern Recognition Analysis (형상인식을 이용한 압력용기 용접부 결함 특성 분류)

  • Shim, C.M.;Joo, Y.S.;Hong, S.S.;Jang, K.O.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.2
    • /
    • pp.11-19
    • /
    • 1993
  • It is very essential to get the accurate classification of defects in primary pressure vessel weld for the safety of nuclear power plant. The signal analysis using the digital signal processing and pattern recognition is performed to classify UT defects extracting feature vector from ultrasonic signals. The minimum distance classifier and the maximum likelihood classifier based on statistics were applied in this experiment to discriminate ultrasonics data obtained form both the training specimens (slit, hole) and the testing specimens(crack, slag). The classification rate was measured using pattern classifier. Results of this study show the promise in solving the many flaw classification problems that exist today.

  • PDF

Development of Feature Selection Method for Neural Network AE Signal Pattern Recognition and Its Application to Classification of Defects of Weld and Rotating Components (신경망 AE 신호 형상인식을 위한 특징값 선택법의 개발과 용접부 및 회전체 결함 분류에의 적용 연구)

  • Lee, Kang-Yong;Hwang, In-Bom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.46-53
    • /
    • 2001
  • The purpose of this paper is to develop a new feature selection method for AE signal classification. The neural network of back propagation algorithm is used. The proposed feature selection method uses the difference between feature coordinates in feature space. This method is compared with the existing methods such as Fisher's criterion, class mean scatter criterion and eigenvector analysis in terms of the recognition rate and the convergence speed, using the signals from the defects in welding zone of austenitic stainless steel and in the metal contact of the rotary compressor. The proposed feature selection methods such as 2-D and 3-D criteria showed better results in the recognition rate than the existing ones.

  • PDF

Classification of Welding Defects in Austenitic Stainless Steel by Neural Pattern Recognition of Ultrasonic Signal (초음파신호의 신경망 형상인식법을 이용한 오스테나이트 스테인레스강의 용접부결함 분류에 관한 연구)

  • Lee, Gang-Yong;Kim, Jun-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1309-1319
    • /
    • 1996
  • The research for the classification of the natural defects in welding zone is performd using the neuro-pattern recognition technology. The signal pattern recognition package including the user's defined function is developed to perform the digital signal processing, feature extraction, feature selection and classifier selection, The neural network classifier and the statistical classifiers such as the linear discriminant function classifier and the empirical Bayesian calssifier are compared and discussed. The neuro-pattern recognition technique is applied to the classificaiton of such natural defects as root crack, incomplete penetration, lack of fusion, slag inclusion, porosity, etc. If appropriately learned, the neural network classifier is concluded to be better than the statistical classifiers in the classification of the natural welding defects.

A Study on Improved Method of Voice Recognition Rate (음성 인식률 개선방법에 관한 연구)

  • Kim, Young-Po;Lee, Han-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.77-83
    • /
    • 2013
  • In this paper, we suggested a method about the improvement of the voice recognition rate and carried out a study on it. In general, voices were detected by applying the most widely-used method, HMM (Hidden Markov Model) algorithm. Regarding the method of detecting voices, the zero crossing ratio was calculated based on the units of voices before the existence of data was identified. Regarding the method of recognizing voices, the patterns shown by the forms of voices were analyzed before they were compared to the patterns which had already been learned. According to the results of the experiment, in comparison with the recognition rate of 80% shown by the existing HMM algorithm, the suggested algorithm based on the recognition of the patterns shown by the forms of voices showed the recognition rate of 92%, reflecting the recognition rate improved by about 12% compared to the existing one.

Detection and Classification of Defect Signals from Rotator by AE Signal Pattern Recognition (AE 신호 형상 인식법에 의한 회전체의 신호 검출 및 분류 연구)

  • Kim, Ku-Young;Lee, Kang-Yong;Kim, Hee-Soo;Lee, Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.3
    • /
    • pp.79-86
    • /
    • 2001
  • The signal pattern recognition method by acoustic emission signal is applied to detect and classify the defects of a journal bearing in a power plant. AE signals of main defects such as overheating, wear and corrosion are obtained from a small scale model. To detect and classify the defects, AE signal pattern recognition program is developed. As the classification methods, the wavelet transformation analysis, the frequency domain analysis and time domain analysis are used. Among three analyses, the wavelet transformation analysis is most effective to detect and classify the defects of the journal bearing..

  • PDF

Defects Classification with UT Signals in Pressure Vessel Weld by Fuzzy Theory (퍼지이론을 이용한 압력용기 용접부 초음파 결함 특성 분류)

  • Sim, C.M.;Choi, H.L.;Baik, H.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.1
    • /
    • pp.11-22
    • /
    • 1997
  • It is very essential to get the accurate classification of defects in primary pressure vessel and piping welds for the safety of nuclear power plant. Ultrasonic testing has been widely applied to inspect primary pressure vessel and piping welds of nuclear power plants during PSI / ISI. Classification of flaws in weldments from their ultrasonic scattering signals is very important in quantitative nondestructive evaluation. This problem is ideally suited to a modern ultrasonic Pattern recognition technique. Here, a brief discussion on systematic approach to this methodology is presented including ultrasonic feature extraction, feature selection and classification. A stronger emphasis is placed on Fuzzy-UTSCS (UT signal classification system) as efficient classifiers for many practical classification problems. As an example Fuzzy-UTSCS is applied to classify flaws in ferrite pressure vessel weldments into two types such as linear and volumetric. It is shown that Fuzzy-UTSCS is able to exhibit higher performance than other classifiers in the defect classification.

  • PDF