DOI QR코드

DOI QR Code

Characterization of Surface Films Formed Prior to Bulk Reduction of Lithium in Rigorously Dried Propylene Carbonate Solutions


Abstract

Surface films formed prior to bulk reduction of lithium have been studied at gold, platinum, and copper electrodes in rigorously dried propylene carbonate solutions using electrochemical quartz crystal microbalance (EQCM) and secondary ion mass spectrometry experiments. The results indicate that the passive film formation takes place at a potential as positive as about 2.0 V vs. Li/Li+ , and the passive film thus formed in this potential region is thicker than a monolayer. Quantitative analysis of the EQCM results indicates that electrogenerated lithium reacts with solvent molecules to produce a passive film consisting of lithium carbonate and other compounds of larger molecular weights. The presence of lithium carbonate is verified by SIMS, whereas the lithium compounds of low molecular weights, including lithium hydroxide and oxide, are not detected. Further lithium reduction takes place underneath the passive film at potentials lower than 1.2 V with a voltammetric current peak at about 0.6 V.

Keywords

References

  1. J. Electrochem. Soc. v.139 Scrosati, B.
  2. Phys. Today v.31 Fischer, J. E.;Thompson, T. E.
  3. J. Electrochem. Soc. v.142 Aurbach, D.;Ein-Eli, Y.
  4. J. Electrochem. Soc. v.142 Tatsumi, K.;Iwashita, N.;Sakaebe, H.;Shioyama, H.;Higuchi, S.
  5. Phys. Rev. v.44 Dahn, J. R.
  6. J. Electrochem. Soc. v.140 Ohzuku, T.Iwakoshi, Y.;Sawai, K.
  7. J. Power Sources v.9 Yazami, R.;Touzain, Ph.
  8. J. Electrochem. Soc. v.142 Takami, N.;Satoh, A.;Hara, M.;Ohsaki, T.
  9. J. Phys. Rev. v.42 Dahn, J. R.;Fong, R.;Spoon, M.
  10. J. Electrochem. Soc. v.142 Jiang, Z.;Alamgir, M.;Abraham, K. M.
  11. J. Electrochem. Soc. v.134 Morita, M.;Hayashida, H.;Matsuda, Y.
  12. J. Electrochem. Soc. v.140 Shu, Z. X.;McMillan, R. S.;Murray, J. J.
  13. J. Electrochem. Soc. v.137 Fong, R.;Von Sacken, U.;Dahn, J. R.;
  14. J. Electrochem. Soc. v.117 Dey, A. N.;Sulliovan, B. P.
  15. J. Electrochem. Soc. v.126 Peled, E.
  16. J. Electrochem. Soc. v.118 Dey, A. N.
  17. J. Electrochem. Soc. v.137 Farcy, J.;Messina, R.;Perichon, J.
  18. J. Electrochem. Soc. v.139 Kumagai, N.;Matsuura, Y.;Tanno, K.
  19. J. Electrochem. Soc. v.140 Kumagai, N.;Matsuura, Y.;Tanno, K.
  20. J. Electrochem. Soc. v.138 Kanehori, K.;Kirino, F.;Kudo, T.;Miyauchi, K.
  21. J. Electrochem. Soc. v.139 Guyomard, D.;Tarascon, J. M.
  22. J. Electrochem. Soc. v.129 Baranski, A. S.;Fawcett, W. R.
  23. J. Langmuir v.2 Li, J.;Pons, S.;Smith, J. J.
  24. J. Electrochem. Chem. v.216 Xing, X. K,;Abel, P.; McLintyre, R.;Scherson, D.
  25. Ber. Bunsenges. Phys. Chem. v.92 Gerischer, H.;Wagner. D.;
  26. Electrochem. Acta v.34 Wagner, D.;Gerischer, H.
  27. Electrochem. Acta v.34 Aurbach. D.;Gottlieb, H.
  28. J. Electrochem. Chem. v.297 Aurbach, D.;Daroux, M.;Faguy, P.;Yeager, E.
  29. J. Electrochem. Chem. v.393 Aurbach, D.;Zaban, A.
  30. J. Electrochem. Chem. Soc. v.146 Piao, T.;Park, S. -M.;Doh, C. -H.;Moon, S. -I.
  31. J. Electrochem. Soc. v.148 Kim, Y. -O.Park, S. -M.
  32. Modern Electrochemistry, v.2 Bockris, J. O'M.;Reddy, A. K. N.
  33. Phys. v.155 Sauerbrey, G. Z.
  34. J. Electrochem. Chem. v.74 Eichinger, G.
  35. J. Electrochem. Chem. v.219 Arakawa, M.;Yamaki, J. -I.
  36. J. Electrochem. Soc. v.134 Aurbach, D.;Daroux, M. L.;Paguy, P. W.;Yeager, E.
  37. Physcial Electrochemistry Ward, M. D.;Rubinstein, I.(Ed.)
  38. J. Am. Chem. Sco. v.119 Kang, H.;Kim, K. D.;Kim, K. Y.
  39. J. Chem. Phys. v.103 Yang, M. C.;Lee, H. W.;Kang, H.

Cited by

  1. Direct Probing into the Electrochemical Interface Using a Novel Potential Probe: Au(111) Electrode/NaBF4 Solution Interface vol.25, pp.4, 2004, https://doi.org/10.5012/bkcs.2004.25.4.577
  2. Interfacial Processes of a Model Lithium Ion Battery Anode Observed, in Situ, with Vibrational Sum-Frequency Generation Spectroscopy vol.119, pp.19, 2001, https://doi.org/10.1021/acs.jpcc.5b01290