DOI QR코드

DOI QR Code

Potential Energy Surface from Spectroscopic Data in the Photodissociation of Polyatomic Molecules


초록

The time-dependent tracking inversion method is studied to extract the potential energy surface of the electronic excited state in the photodissociation of triatomic molecules. Based on the relay of the regularized inversion procedure and time-dependent wave packet propagation, the algorithm extracts the underlying potential energy surface piece by piece by tracking the time-dependent data, which can be synthesized from Raman excitation profiles. We have demonstrated the algorithm to extract the potential energy surface of electronic excited state for NO2 molecule where the wave packet split on a saddle-shaped surface. Finally, we describe the merits of the time-dependent tracking inversion method compared with the time-independent inversion method and discussed several extensions of the algorithm.

키워드

참고문헌

  1. Molecular Reaction Dynamics and Chemical Reactivity Levine, R. D.;Bernstein, R. B.
  2. Rev. Mod. Phys.;Comput. Phys. Rep. v.46-5 Buck, U.
  3. Comments At. Mol. Phys. v.17 Gerber, R. B.
  4. Chem. Rev. v.88 Buckingham, A. D.;Fowler, P. W.;Hutson, J. M.
  5. Annu. Rev. Phys. Chem. v.42 Friesner, R. A.
  6. J. Chem. Phys. v.89 Ho, T. -S.;Rabitz, H.
  7. J. Chem. Phys. v.94 Ho, T. -S.;Rabitz, H.
  8. J. Chem. Phys. v.96 Ho, T. -S.;Rabitz, H.
  9. J. Phys. Chem. v.97 Ho, T. -S.;Rabitz, H.
  10. J. Korean Chem. Soc. v.40 Kim, H. J.;Kim, Y. S.
  11. Bull. Korean Chem. Soc. v.18 Kim, H. J.;Kim, Y. S.
  12. Annu. Rev. Phys. Chem. v.41 Hutson, J. M.
  13. Phys. v.73 Rydberg, R. Z.
  14. Phys. v.80 Rydberg, R. Z.
  15. Proc. Phys. Soc. v.59 Rees, A. L. G.;
  16. Phys. Rev. Lett. v.52 Roth, R. M.;Ratner, M. A.;Gerber, R. B.
  17. Solution of Ill-posed Problem Tikhonov, A. N.;Arsenin, V.
  18. Inverse Probl. v.7 Snieder, R.
  19. Inverse Scattering Problems in Optics Bates, H.
  20. Inverse Probl. v.1 Bertero, M.;Del Mol, C.;Pike, E. R.
  21. Inverse Probl. v.4 Bertero, M.;Del Mol, C.;Pike, E. R.
  22. Inverse Probl. v.8 Hansen, P. C.
  23. SIAM Rev. v.34 Hansen, P. C.
  24. Science v.242 Zewail, A. H.
  25. J. Phys. Chem. v.170 Bernstein, R. B.;Zewail, A. H.
  26. J. Rhys. Chem. v.95 Roberts, G.;Zewail, A. H.
  27. J. Phys. Chem. v.97 Zewail, A. H.
  28. Chem. phys. v.166 Grueble, M.;Roberts, G.;Dantus, M.;Bowman, R. M.;Zewail, A. H.
  29. J. Phys. Chem. v.92 Kosloff, R.
  30. J. Phys. Chem. v.99 Baer, R.;Kosloff, R.
  31. Phys. Rev. v.52 Lu, Z.;Rabitz, H.
  32. Atomic and Molecules Beam Methods v.1 Scoles, G.
  33. J. Phys. Chem. v.92 Stewart, O. W.;Imre, D. G.
  34. J. Phys. Chem. v.92 Stewart, O. W.;Imre, D. G.
  35. Bull. Korean Chem. Soc. v.22-92 no.5 Stewart, O. W.;Imre, D. G.
  36. J. Compl. Phys. v.47 Feit, M. D.;Fleck, J. A. Jr.
  37. J. Chem. Phys. Vasan, V. S.;Askar, A.;Rabitz, H. A.
  38. J. Chem. Phys. v.111 Mayor, F. S.;Cross, R. J.
  39. J. Chem. Phys. v.9 Untch, A.;Weide, K.;Schinke, R.
  40. J. Phys. Chem. v.97 Huber, J. R.l;Schinke, R.
  41. J. Phys. Chem. v.97 Manthe, U.;Meyer, H. -D.;Cederbaum, L. S.
  42. Femtosecond Chemistry Johnson, B. R.;Kinsey, J. L.
  43. Quantal Wavepacket Calculations of Reactive Scattering Mohan, V.;Sathyamurthy, N.
  44. J. Mol. Spectrosc. v.117 McDonald, J. K.;Merritt, J. A.;Kalasinsky, V. F.;Heusel, H. L.;During, J. R.
  45. J. Phys. Chem. v.93 Schinke, R.;Novella, M.;Suter, H. O.;Huber, J. R.
  46. Mol. Phys. v.80 Hirsch, B.;Buenker, R. J.
  47. J. Phys. Chem. v.96 Ogai, A.;Brandon, J.;Reisler, H.;Suter, U. H.;Huber, J. R.;Dirke, M. V.;Schinke, R.

피인용 문헌

  1. Steering the Dynamics within Reduced Space through Quantum Learning Control vol.24, pp.6, 2003, https://doi.org/10.5012/bkcs.2003.24.6.744
  2. Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation vol.25, pp.12, 2001, https://doi.org/10.5012/bkcs.2004.25.12.1829
  3. Potential energy surface of triplet N2O2 vol.144, pp.2, 2001, https://doi.org/10.1063/1.4939008