DOI QR코드

DOI QR Code

Raman Spectra of the Solid-Solution between $Rb_2La_2Ti_3O_10$ and $RbCa_2Nb_3O_10$


Abstract

A site preference of niobium atom in Rb2-xLa2Ti3-xNbxO10 (0.0 $\leq$ x $\leq1.0)$ and RbLa2-xCaxTi2-xNb1+xO10 (0.0 $\leq$ x $\leq2.0)$, which are the solid-solutions between Rb2La2Ti3O10 and RbCa2Nb3O10, has been investigated by Raman spectroscopy. The Raman spectra of Rb2-xLa2Ti3-xNbxO10 (0.0 $\leq$ x $\leq1.0)$ gave an evidence that niobium atoms substituted for titanium atoms preferably occupy the highly distorted outer octahedral sites rather than the central ones in triple-octahedral perovskite layers. In contrast, the Raman spectra of RbLa2-xCaxTi2-xNb1+xO10 (0.0 $\leq$ x $\leq2.0)$ showed no clear information for the cationic arrangement in perovskite slabs. This difference indicated that a site preference of niobium atoms is observed only when the linear Rb-O-Ti linkage can be replaced by much stronger terminal Nb-O bond with double bond character. From comparison with the Raman spectroscopic behavior of CsLa2-xA’xTi2-xNb1+xO10 (A’ = Ca and Ba; 0.0 $\leqx\leq2.0)$, it is also proposed that a local difference in arrangement of interlayer atoms causes a significantly different solid acidity and photocatalytic activity of the layered perovskite oxides, despite their crystallographically similar structures.

Keywords

References

  1. Chem. Phys. Lett. v.92 no.433 Domen, K.;Naito, S.;Ohnish, T.;Tamaru, K.
  2. J. Catal. v.111 no.67 Kudo, A.;Tanaka, A.;Domen, K.;Maruya, K.;Aika, K.;Ohnish, T.
  3. J. Chem. Soc. Chem. Commun. v.1298 Inoue, Y.;Kubokawa, T.;Sato, K.
  4. J. Chem. Soc. Chem. Commun. v.579 Inoue, Y.;Niiyama, T.;Asai, Y.;Sato, Y.
  5. J. Chem. Soc. Dalton Trans. v.93 no.3229 Uchida, S.;Yamamoto, Y.;Fujishiro, Y.;Watanabe, A.;Itoh, O.;Sato, T.
  6. Chem. Mater. v.10 no.72 Ikeda, S.;Hara, M.;Kondo, J. N.;Domen, K.;Takahashi, H.;Okubo, T.;Kakihana, M.
  7. J. Mater. Chem. v.8 no.2335 Ogura, S.;Kohno, M.;Sato, K.;Inoue, Y.
  8. J. Chem. Commun. v.1077 Kim, H.;Hwang, D.;Kim, J.;Kim, Y.;Lee, J.
  9. Chem. Mater. v.9 no.1063 Takata, T.;Furumi, Y.;Shinohara, K.;Tanaka, A.;Hara, M.;Kondo, J.;Domen, K.
  10. Chem. Mater. v.10 no.72 Ikeda, S.;Hara, M.;Kondo, J.;Domen, K.;Takahashi, H.;Okubo, T.;Kakihana, M.
  11. Chem. Mater. v.5 no.132 Gopalakrishnin, J.;Uma, S.;Bhat, V.
  12. J. Mater. CHem. v.10 no.1209 Hong, Y. -S.;Kim, S. -J.;Kim, S. -J.;Choy, J.-H.
  13. Chem. Mater. v.12 no.1771 Byeon, S. -H.;Nam, H. -J.
  14. Mater. Res. Bull. v.16 no.1429 Dion, M.;Ganne, M.;Tournoux, M.
  15. Inorg. Chem. v.26 no.4329 Gopalakrishnan, J.;Bhat, V.
  16. Mater. Res. Bull. v.22 no.413 Gopalakrishnan, J.;Bhat, V.;Raveau, B.
  17. J. Mater. Chem. v.3 no.709 Uma, S.;Raju, A. R.;Gopalakrishnan, J.
  18. J. Mater. Chem. v.6 no.1823 Wright, A. J.;Greaves, C.
  19. J. Mater. Chem. v.9 no.3093 Bhuvanesh, N. S. P.;Crosnier-Lopez, M. P.;Duroy, H.;Fourquet, J. L.

Cited by

  1. Structural Evolution in Polyoxometalates: A DFT Study of Dimerization Processes in Lindqvist and Keggin Cluster Anions vol.45, pp.16, 2001, https://doi.org/10.1021/ic060112c
  2. A DFT study on the effect of metal, anion charge, heteroatom and structure upon the relative basicities of polyoxoanions vol.262, pp.1, 2001, https://doi.org/10.1016/j.molcata.2006.08.065
  3. Functional Engineering of Perovskite Nanosheets: Impact of Lead Substitution on Exfoliation in the Solid Solution RbCa2–xPbxNb3O10 vol.643, pp.21, 2001, https://doi.org/10.1002/zaac.201700269
  4. Synthesis of n-Alkoxy Derivatives of Layered Perovskite-Like Niobate HCa2Nb3O10 and Study of Their Photocatalytic Activity for Hydrogen Production from an Aqueous Solution of Methanol vol.11, pp.8, 2021, https://doi.org/10.3390/catal11080897