DOI QR코드

DOI QR Code

Shock Tube and Modeling Study of the Ignition of Propane


Abstract

The ignition of propane was investigated behind reflected shock waves in the temperature range of 1350-1800 K and the pressure range of 0.75-1.57 bar. The ignition delay time was measured from the increase of pressure and OH emission in the C3H8-O2-Ar system. The relationship between the ignition delay time and the concentrations of propane and oxygen was determined in the form of mass-action expression with an Arrhenius temperature dependence. The numerical calculations were also performed to elucidate the important steps in the reaction scheme of propane ignition using various reaction mechanisms. The ignition delay times calculated from the mechanism of Sung et al.1 were in good agreement with the observed ones.

Keywords

References

  1. 27th Symp. (Int.) on Combustion Sung, C. J.;Li, B.;Wang, H.;Law, C. K.
  2. J. Phys. Chem. v.79 no.686 Lifshitz, A.;Frenklach, M.
  3. J. Phys. Chem. v.84 no.2005 Koike, T.;Gardiner, W. C.
  4. 18th Symp. (Int.) on Combustion Chiang, C.;Skinner, G. B.
  5. J. Phys. Chem. v.87 no.499 Al-Alami, M. Z.;Klefer, J. H.
  6. 13th Symp. (Int.) on Combustion Burcat, A.;Lifshitz, A.;Sheller, K.;Skinner, G. B.
  7. Int. J. Mass Spec. Ion Phys. v.48 no.71 Hidaka, Y.;Ikoma, A.;Kawano, H.;Suga, M.
  8. Ph. D. Dissertation Qin, Z.
  9. Combust. Sci. Tech. v.34 no.177 Warnatz, J.
  10. 18th Symp. (Int.) on Combustion Cathonnet, M.;Boettner, J. C.;James, H.
  11. Lawrense Livermore National Laboratory Westbrook, C. K.;Pitz, W. J.;Urtiew, P. A.
  12. Combust. Flame v.55 no.213 Jachimowski, C. J.
  13. Combust. Sci. Tech. v.56 no.23 Dagaut, P.;Cathonnet, M.;Boettner, J. C.;Gaillard, F.
  14. Combust. Sci. Tech. v.83 no.77 Sloane, T. M.
  15. Int. J. Chem. Kinetics v.24 no.813 Dagaut, P.;Cathonnet, M.;Boettner, J. C.
  16. J. Korean Chem. Soc. v.43 no.156 Jee, S. B.;Kim, W. K.;Shin, K. S.
  17. Bull. Korean Chem. Soc. v.21 no.1015 Jee, S. B.;Kim, K.;Shin, K. S.
  18. J. Korean Chem. Soc. v.41 no.600 Kim, W. K.;Shin, K. S.
  19. Annu. Rev. Phys. Chem. v.41 no.559 Tsang, W.;Lifshitz, A.
  20. Combustion, 3rd Ed. Glassman, I.
  21. Detailed Reaction Mechanism for small hydrocarbons Combustion Konnov, A. A.
  22. GRI-Mechanism 3.0 is available by World Wide Wdb using the URL locator htt;://euler.berkeley.edu/gri_mech/version30/text30.html/
  23. Sandia National Laboratories Report SAND96-8216 Chemkin-III; A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics
  24. Sandia National Laboratories Report SAND87-8215B The Chemkin Thermodynamic Data Base Kee, R. J.;Rupley, F. M.;Miller, J. A.
  25. J. Phys. Chem. v.81 no.2367 Gardiner, W. C. Jr.
  26. In Gas-Phase Combustion Chemistry Lissianski, V. V.;Zamansky, V. M.;Gardiner, W. C., Jr.
  27. J. Korean Chem. Soc. v.42 no.575 Shim, S. B.;Jeong, S. H.;Shin, K. S.
  28. 22nd Symp. (Int.) on Combustion Bastin, E.;Delfau, J. L.;Reuillon, M.;Vovelle, C.;Warnatz, J.

Cited by

  1. The Addition Effect of Fe(CO)5 on Methane Ignition vol.23, pp.2, 2001, https://doi.org/10.5012/bkcs.2002.23.2.175
  2. Shock Tube and Modeling Study of the Monomethylamine Oxidation at High Temperature vol.25, pp.2, 2001, https://doi.org/10.5012/bkcs.2004.25.2.293
  3. 에탄올 점화 과정에 관한 충격관 실험 및 모델 연구 vol.48, pp.1, 2001, https://doi.org/10.5012/jkcs.2004.48.1.012
  4. 메탄올-산소-아르곤 혼합기체의 점화과정에 관한 충격관 실험 vol.48, pp.1, 2001, https://doi.org/10.5012/jkcs.2004.48.1.099
  5. Theoretical Analysis on the Injection of H2, CO, CH4 Rich Gases into the Blast Furnace vol.45, pp.2, 2001, https://doi.org/10.2355/isijinternational.45.166
  6. A small detailed chemical-kinetic mechanism for hydrocarbon combustion vol.144, pp.3, 2001, https://doi.org/10.1016/j.combustflame.2005.07.016
  7. A Shock Tube and Chemical Kinetic Modeling Study of Methy Ethyl Ketone Oxidation vol.182, pp.4, 2001, https://doi.org/10.1080/00102200903466129
  8. Autoignition Delay Time Measurements of Methane, Ethane, and Propane Pure Fuels and Methane-Based Fuel Blends vol.132, pp.9, 2001, https://doi.org/10.1115/1.4000590
  9. Visualisation of propane autoignition in a turbulent flow reactor using OH* chemiluminescence imaging vol.160, pp.6, 2013, https://doi.org/10.1016/j.combustflame.2013.01.018
  10. Autoignition of propane behind shock waves vol.9, pp.1, 2001, https://doi.org/10.1134/s1990793115010145
  11. Emission of CH* and C2* during the high-temperature oxidation of propane in reflected shock waves vol.1147, pp.None, 2001, https://doi.org/10.1088/1742-6596/1147/1/012043