DOI QR코드

DOI QR Code

Silver Colloidal Effects on Excited-State Structure and Intramolecular Charge Transfer of p-N,N-dimethylaminobenzoic Acid Aqueous Cyclodextrin Solutions


Abstract

The silver colloidal effects on the excited-state structure and intramolecular charge transfer (ICT) of p-N,N-dimethylaminobenzoic acid (DMABA) in aqueous cyclodextrin (CD) solutions have been investigated by UV-VIS absorption, steady-state and time-resolved fluorescence, and transient Raman spectroscopy. As the concentration of silver colloids increases, the ratio of the ICT emission to the normal emission (Ia /Ib) of DMABA in the aqueous $\alpha-CD$ solutions are greatly decreased while the Ia /Ib values in the aqueous B-CD solutions are significantly enhanced. It is also noteworthy that the ICT emission maxima are red-shifted by 15-40 nm upon addition of silver colloids, implying that DMABA encapsulated in $\alpha-CD$ or B-CD cavity is exposed to more polar environment. The transient resonance Raman spectra of DMABA in silver colloidal solutions demonstrate that DMABA in the excited-state is desorbed from silver colloidal surfaces as demonstrated by the disappearance of νs (CO2-)(1380 cm-1 ) with appearance of ν(C-OH)(1280 cm -1) band, respectively. Thus, in the aqueous B-CD solutions the carboxylic acid group of DMABA in the excited-state can be readily hydrogen-bonded with the secondary hydroxyl group of B-CD while in aqueous and $\alpha-CD$ solutions the carboxylic acid group of DMABA has the hydrogen-bonding interaction with water. Consequently, in the aqueous B-CD solutions the enhancement of the Ia /Ia value arises from the intermolecular hydrogen-bonding interaction between DMABA and the secondary hydroxyl group of B-CD as well as the lower polarity of the rim of the B-CD cavity compared to bulk water. This is also supported by the increase of the association constant for DMABA/ B-CD complex in the presence of silver colloids.

Keywords

References

  1. Appl. Spectrsc. v.48 Jiang, Y. B.
  2. J. Photoscience v.3 Kim, Y. H.;Cho, D. W.;Yoon, M.;Kim, D.
  3. J. Photochem. Photobiol. A:Chem. v.88 Jiang, Y. B.
  4. J. Phys. Chem. v.100 Kim, Y. H.;Cho, D. W.;Yoon, M.;Kim, D.
  5. J. Photochem. Photobiol. v.39 Cox, G. S.;Hauptman, P.;Turroo, N.
  6. Chem. Phys. Letters v.157 Nag, A.;Dutta, R.;Chattopadhyay, N.;Bhattacharyya, K.
  7. Chem. Phys. Letters v.212 Al-Hassan, K. A.;Klein, U. K. A.
  8. Chem. Phys. Letter v.264 Kim, Y.;Cheon, H. W.;Song, N. W.;Kim, D.;Yoon, M.
  9. J. Phys. Chem. v.99 Hashimoto, M.;Hamaguchi, H.
  10. Aurface Enhanced Raman Scattering Chang, R. K.;Furtak, T. E. (Eds.)
  11. J. Phys. Chem. v.87 Suh, J. S.;DiLella, D. P.;Moskovits, M.
  12. J. Raman Spectrisc. v.29 Suh, J. S.;Kim, J.
  13. J. Phys. Chem. v.100 Jeoung, S. C.;Kim, D.;Cho, D. W.;Yoon, M.
  14. J. Phys. Chem. v.100 Jeoung, S. C.;Kim, D.;Cho, D. W.;Yoon, M.;Ahn, K. H.
  15. J. Phys. Chem. v.101 Jeoung, S. C.;Eom, H. S.;Kim, D.;Cho, D. W.;Yoon, M.
  16. Bull. Korean Chem. Soc. v.18 Kim, Y. H.;Yoon, M.;Cho, D. W.;Kim, D.
  17. Creghton, J. A.
  18. J. Phys. Chem. B v.101 Jang, N. H.;Suh, J. S.
  19. J. Phys. Chem. v.100 Roberts, E. L.;Dey, J.;Warner, I. M.
  20. J. Phys. Chem. A v.101 Dey, J.;Roberts, E. L.;Warner, I. M.
  21. J. Phys. Chem. A v.102 Dey, J.;Roberts, E. L.;Warner, I. M.
  22. Chem. Phys. Letters v.151 Nag, A.;Dutta, R.;Bhattacharyya, K.
  23. J. Chem. Soc. Faraday Trans v.86 Nan, A.;Dutta, R.;Bhattacharyya, K.

Cited by

  1. Catalytic oxidation of 4-dimethylaminobenzaldehyde by gold nanoparticles. Part II: Surface-enhanced Raman spectra vol.876, pp.1, 2008, https://doi.org/10.1016/j.molstruc.2007.06.010
  2. Hydrogen bonding of excited states in supramolecular host–guest inclusion complexes vol.14, pp.25, 2001, https://doi.org/10.1039/c2cp40310b