DOI QR코드

DOI QR Code

STM Study of 2-Mercaptoethanol Self-Assembled Monolayer on Au(111)


Abstract

Presented are the STM images of self-assembled monolayer of 2-mercaptoethanol on Au(111). Striped structures of ($6{\times}3_{\frac{1}{2}}$), ($5{\times}3_{\frac{1}{2}}$), ($4{\times}3_{\frac{1}{2}}$) and compact-($5{\times}3_{\frac{1}{2}}$) were observed after annealing at $80^{\circ}C.$ Analysis of the ordered structures revealed that the basic fundamental units of the ordered structures were three crystallographically non-equivalent ($3_{\frac{1}{2}}{\times}3_{\frac{1}{2}}$) $R30^{\circ}$ assemblies, and that the way of combination of the assemblies produced the four different structures. The($6{\times}3_{\frac{1}{2}}$) structure ( $\theta$ = 0.33) was composed of one ($3_{\frac{1}{2}}{\times}3_{\frac{1}{2}}$)$R30^{\circ}$ assembly, while the ($5{\times}3_{\frac{1}{2}}$) ( $\theta$ = 0.30) and ($4{\times}3_{\frac{1}{2}}$) ( $\theta$ = 0.38) structures were consisted of two ($3_{\frac{1}{2}}{\times}3_{\frac{1}{2}}$) $R30^{\circ}$ assemblies, separated by 5a and 4a, respectively. Furthermore, the compact-(5X 3½) structure ( $\theta$ = 0.50) was obtained by overlapping three ($3_{\frac{1}{2}}{\times}3_{\frac{1}{2}}$) $R30^{\circ}$ assemblies. In spite of the diversity in the adsorption structures, all the adsorption sites of 2-mercaptoethanol were fundamentally identical. On the other hand, the unannealed primitive SAM of 2-mercaptoethanol was characterized by two observations: a short-range order keeping the adsorbed molecules at approximately $3_{\frac{1}{2}}$ a and the small domains of the striped structures supporting that the observed surface structures on the annealed surface were the extension of the primitive layer of 2-mercaptoethanol. Comparing these observations with the already published structures of ethanthiol, it was concluded that the interaction between the hydroxyl groups of 2-mercaptoethanol might play a significant role in the adsorption step of 2-mercaptoethanol on Au(111) to organize the adsorption structures different from those of ethanthiol.

Keywords

References

  1. Chem. Rev. v.96 Ulman, A.
  2. Chem. Rev. v.97 Poirier, G. E.
  3. J. Chem. Phys. v.98 Camillone, N.;Chidsey, C. E.;Liu, G.-Y.;Acoles, G.
  4. Phys. Rev. Lett. v.70 Fenter, P.;Eisenberger, A.;Liang, K. S.
  5. Appl. Phys. A v.59 Bucher, J.-P.;Santensson, L.;Kern, K.
  6. Langmuir v.10 Delamarche, E.(et al.)
  7. Langmuir v.10 Poirer, G. E.;Tarlov, M.
  8. Langmuir v.5 Bain, C. D.;Biebuyck, H. A.;Whitesides, G. M.
  9. J. Phys. Chem. v.102 Olbris, D. J.;Ulman, A.;Shnidman, Y.
  10. J. Chem. Phys. v.105 Poirier, G. E.;Pylant, E. D.;White, J. M.
  11. J. Chem. Phys. v.98 Dubois, L. H.;Zegarski, B. R.;Nuzzo, R. G.
  12. Langmuir v.10 Sprik, M.;Delamarche, E.;Michel, B.;Rthlisberger, U.;Klein, M. L.;Wolf, H.;Ringsdorf, H.
  13. J. Electroanal. Chem. v.107 Clavilier, J.;Faure, R.;Guinet, G.;Durand, R.
  14. Langmuir v.15 Hagenstrom, H.;Schneeweiss, M. A.;Kolb, D. M.
  15. J. Am. Chem. Soc. v.113 Widrig, C. A.;Alves, C. A.;Proter, M. C.

Cited by

  1. Conductance Switching of Alkane Molecules by Gauche Conformation on Au(111) vol.2, pp.None, 2004, https://doi.org/10.1380/ejssnt.2004.186
  2. Structural Characterization of Aldehyde-Terminated Self-Assembled Monolayers vol.111, pp.49, 2001, https://doi.org/10.1021/jp076124g
  3. A Generalized Mechanism for Ligand‐Induced Dipolar Assembly of Plasmonic Gold Nanoparticle Chain Networks vol.21, pp.5, 2011, https://doi.org/10.1002/adfm.201001754