Genetic Transformation of Panax ginseng with Herbicide Resistant Gene

제초제 저항성 유전자에 의한 인삼의 형질전환

  • 양계진 (중부대학교 생명자원학부)
  • Published : 2001.11.01

Abstract

Transformation of ginseng plants was achieved by biolistic system with cotyledon explants and callus using phosphinothricin acetyl-transferase (PAT) gene resisting to a herbicide of Bialaphos. The binary vector for transformation was constructed with disarmed Ti-plasmid and with double 355 promoter. The introduced NPT II and PAT genes of the transgenic ginseng plants were successfully identified by the PCR, and the survival test on the medium with basta. The transgenic ginseng plants were propagated using repetitive secondary embryogenesis. The transgenic ginseng plantlets had normal structures of roots and shoots, and dormant buds for new year sprouting. We transferred the transgenic plants to greenhouse and observed the continuing growth until a new year.

인삼의 자엽과 callus에 Biolistic system을 이용한 비선택성 제초제인 bialaphos에 대한 내성을 갖게 하는 PAT 유전자의 형질전환효율 향상 및 형질전환체의 유전분석에 관한 실험을 수행하였다. 자엽의 경우에는 형질전환율이 약했지만 callus의 경우에는 target distance 9 cm, rupture disk-macro-carrier gap distance를 1/3"로 했을 때 가장 양호한 형질전환 결과를 보였다. 형질전환된 인삼식물체에서 PAT 및 NPT 유전자의 존재 여부를 확인하기 위해서 PCR을 수행한 결과 정상 식물체서는 전혀 PCR product가 형성되지 않은 반면 형질전환체 모두에서 PAT (약 300 bp)와 NPT (약 800 bp) 유전자의 band를 확인하여 각각의 유전자가 삽입되어 PAT 및 NPT IIgene이 도입된 형질전환체임을 확인할 수 있었다. 있었다.

Keywords

References

  1. EMBO J v.6 Expression of alfalfa mosaic virus coat protein gene confers cross-protection in transgenic tobacco and tomato plants Abel PP;Nelson RS;De B;Hoffmann N;Rogers SG;Fraley RT;Shah DM
  2. Methods in Enzymology v.153 Binary Ti vector for plant transformation and promoter analysis An G
  3. C. A. Meyer. BotZh v.7 Organogenesis and somatic embryogenesis in the tissue culture of Panax ginseng Butenco, RG;Brushwitzky I;Slepyan L
  4. Theor Appl Genet v.57 Plant regeneration through somatic embryogenesis in root-derives callus of ginseng (Panax ginseng C. A. Meyer) Chang WC;Hising YI
  5. Plant Cell Reports v.17 no.6 Regenerative ability of somatic poly- and single embryos from ginseng cotyledons Choi YE;Yang DC;Park JC;Soh WY;Choi KT
  6. EMBO J v.3 Engineering herbicide resistance in plants by expression of a detoxifying enzyme DeBlock M;Herrera-Estrella L;Montagu MV;Schell J;Zambryski P
  7. Nucleic Acids Res v.19 A simple and rapid method for the preparation of plant genomic DNA for PCR analysis Edwards K;Johnston C;Thompson C
  8. Nature v.303 A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid Hoekema A;Hirsch PR;Hooykaas PJJ;Schilperoort RA
  9. Plant Molecular Biology v.5 Non-oncogenic plant vectors for use in the Agrobacterium binary vector system Lee, HS;Kwon SY;Paek KH;Kim SW;Lee KW;Liu JR
  10. Physiol Plant v.15 A revised medium for rapid growth and bioassays with tobacco tissue Murashige T;Skoog F
  11. Nagure v.313 Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter Odell JT;Nagy F;Chua NH
  12. Physiol. Plant v.79 Biolistic plant transformation Sanford JC
  13. Korean J Plant Res v.11 Development of basta resistant tobacco using arificial phosphinoghricin acetyltransferase gene Yang DC;Min BH;Choi KT;Woo IS;Park EK
  14. Plant Molecular Biology v.5 Non-oncogenic plant vectors ofr use in the Agrobacterium binary vector system Hoekema A;Van Haaren MJJ;Fellinger AJ;Hooykaas PJJ;Schilperoort RA