Thickness-Driven Spin Reorientation Transition in Co/Pd(111) : In Situ SMOKE Three-Dimensional Vector Magnetometry

  • Lee, Jeong-Won (Department of Physics and Center for Department of Physics and Center for Nanospinics of Spintronic Materials, Korea Advanced Institute of Science and Technology) ;
  • Kim, Sang-Koog (Department of Physics and Center for Department of Physics and Center for Nanospinics of Spintronic Materials, Korea Advanced Institute of Science and Technology) ;
  • Kim, Jonggeol (Department of Physics and Center for Department of Physics and Center for Nanospinics of Spintronic Materials, Korea Advanced Institute of Science and Technology) ;
  • Jeong, Jong-Ryul (Department of Physics and Center for Department of Physics and Center for Nanospinics of Spintronic Materials, Korea Advanced Institute of Science and Technology) ;
  • Ahn, Jae-Seok (Department of Physics, University of Seoul) ;
  • Shin, Sung-Chul (Department of Physics and Center for Department of Physics and Center for Nanospinics of Spintronic Materials, Korea Advanced Institute of Science and Technology)
  • Published : 2001.06.01

Abstract

We have developed a three-axis configurational in situ SMOKE apparatus by which three-dimensional vector magnetization reversal processes are studied for ultrathin Co films grown on a Pd (111) single crystal in the thickness range of spin reorientation transition. This study provides a better understanding of magnetization reversal motions with the knowledge of three components of the magnetization vector at the transition of an easy axis of magnetization from the film normal at 5 ML Co to in-plane at 6 ML Co (ML denotes monolayer). For a 5.25 ML Co, it was observed that a slightly canted magnetization vector from the film normal rotated in the film plane under an applied field direction parallel to the film normal.

Keywords

References

  1. J. Magn. Magn. Mater v.129 R. Allenspach
  2. Phys. Rev. Lett v.69 J. Thomassen;F. may;B. Feldmann;M. Wutting;H. Ibach
  3. Phys. Rev v.B57 Y. T. millev;H. P. Oepen;J. Kirschner
  4. J. Magn. Magn. Mater v.100 S. D. Bader
  5. Superlattice and Microstructure v.1 E. R. Moog;S. D. Bader
  6. Adv. Phys v.42 B. Heinrich;J. F. Cochran
  7. Phys. Rev. Lett v.80 S. Hope;E. Gu;B. Choi;J. A. C. Bland
  8. Phys. Rev. Lett v.67 Z. Q. Qui;J. Pearson;S. D. Bader
  9. Phys. Rev. Lett v.68 Y. Li;K. Baberschke
  10. Phys. Rev. Lett v.70 Z. Q. Qiu;J. Pearson;S. D. Bader
  11. Phys. Rev. v.B52 A Berger;A. W. Pang;H. Hopster
  12. Phys. Rev. v.B55 M. Farle;B. Mirwald-Schulz;A. N. Anisimov;W. Platow;K. Baberschke
  13. Rev. Sci. Instrum v.71 J.-W. Kee;J.-R. Jeong;D.-H. Kim;J. S.Ahn;J. Kim;S.-C. Shin
  14. Appl. Phys. Lett v.69 C.-Y. You;S.-C Shin
  15. J. Appl. Phys. Lett v.84
  16. Appl. Phys. Lett. submitted Sung-Chul Shin;Jeong-Won Lee;Sang-Koog Kim;Jonggeol Kim
  17. Phys. Rev. Lett v.65 R. Allenspach;M. Stampanoni;A. Bishof
  18. Phys. Rev v.B59 S. Padovini;I. Chado;F. Scheurer;J. P. Bucher