Magnetisation Reversal Dynamics in Epitaxial Fe/GaAs(001) and Fe/InAs(001) Thin Films

  • Lee, W.Y (Future Technology Research Division, Korea Institute of science and Technology) ;
  • Shin, K.H (Future Technology Research Division, Korea Institute of science and Technology) ;
  • Kim, H.J (Future Technology Research Division, Korea Institute of science and Technology) ;
  • Bland, J.A.C. (Department of Physics, University of Cambridge)
  • Published : 2001.06.01

Abstract

We present the magnetisation reversal dynamics of epitaxial Fe thin films grown on GaAs(001) and InAs(001) studied as a function of field sweep rate in the range 0.01-160 kOe/s using magneto-optic Kerr effect (MOKE). For 55 and 250 ${\AA}$ Fe/GaAs(001), we find that the hysteresis loop area A follows the scaling relation $A\propto H_{\alpha} \;with\; \alpha=0.03\sim0.05$ at low sweep rates and 0.33~0.40 at high sweep rates. For the 150${\AA}$ Fe/InAs(001) film, $\alpha$is found to be ~0.02 at low sweep rates and ~0.17 at high sweep rates. The differing values of $\alpha$ are attributed to a change of the magnetisation reversal process with increasing sweep rate. Domain wall motion dominates the magnetisation reversal at low sweep rates, but becomes less significant with increasing sweep rate. At high sweep rates, the variation of the dynamic coercivity $H_c{^*}$ is attributed to domain nucleation dominating the reversal process. The results of magnetic relaxation studies for easy-axis reversal are consistent with the sweeping of one or more walls through the entire probed region (~100$\mu m$). Domain images obtained by scanning Kerr microscopy during the easy cubic axis reversal process reveal large area domains separated by zigzag walls.

Keywords

References

  1. Phys. Rev. v.B42 M. Rao;H. R. Krishnamurthy;R. Pandit
  2. Phys. Rev v.B52 M. Acharyya;B. K. Chakrabati
  3. Phys. Rev. Lett v.75 F. Zhong;J. X. Zhang
  4. Phys. Rev. Lett v.70 Y. L. He;G. C. Wang
  5. Phys. Rev. v.B52 Q. jiang;H. N. Yang;G. C. Wang
  6. Phys. Rev. v.B54 B. Raquet;R. Mamy;J. C. Ousset
  7. Phys. Rev. Lett v.78 J. S. Suen;J. L. Erskine
  8. Phys. Rev. v.B59 J. S. Suen;M. H. Lee;G. Teeter;J. L. Erskine
  9. Phys. Rev. v.B60 B. C. Choi;W. Y. Lee;A. Samad;J. A. C. Bland
  10. Phys. Rev. v.B57 J.-P. Jamet;S. Lemerle;P. Meyer;J. Ferre;B. Bartenlian;N. Bardou;C. Chappert;P. Veillet;F. Rousseaux;D. Decanini;H. Launois
  11. Appl. Phys. Rev. Lett v.74 W. Y. Lee;B. C. Choi;J. Lee;C. C. Yao;Y. B.Xu;D. K. Hasko;J. A. C. Bland
  12. Phys. Rev. v.B44 J. M. Florczak;D. Dan Dahlberg
  13. Phys. Rev. v.B51 C. Daboo;R. J. Hicken;E. Gu;M. Gester;S. J. Gray;D. E. P. Eley;E. Ahmad;J. A. C. Bland
  14. J. Appl. Phys. v.80 M. Gester;C. Daboo;R. J. hicken;S. J. Gray;A. Ercole;J. A. C. Bland
  15. Phys. Rev v.B58 Y. B. Xu;E. T. M. Kernohan;D. J. Freeland;A. Ercole;M. Tselepi;J. A. C. Bland
  16. J. Magn. Magn. Master v.148 C. Daboo;M. Gester;S. J. Gray;J. A. C. Bland;R. J.
  17. Appl. Phys. Lett v.73 Y. B. Xu;E. T. M. Kernohan;M. Tselepi;J. A. C. Bland;S. N. Holmes
  18. J. Appl. Phys v.85 Y. B. Xu;D. J. Freeland;E. T. M. Kernohan;W. Y. Lee;M. Tselepi;C. M. Guertler;C. A. F. Vaz;J. A. C. Bland;S. N. Holmes;N. K. Patel;D. A. Ritchie
  19. J. Magn. Magn. Mater v.80 M. Labrune;S. Andrieu;F. Rio;P. Bernstein
  20. J. Magn. Magn. Mater v.172 P. Rosenbusch;J. Lee;G. Lauhoff;J. A. C. Bland
  21. Phys. Rev. Lett v.65 J. Pommier;P. Meyer;G. penissard;J. Ferre;P. Bruno;D. Renard
  22. Phys. Rev. v.B58 R. P. Cowburn;J. Ferre;S. J. Gray;J. A. C. Bland
  23. Appl. Phys. Lett v.75 J. M. Gonzalez;A. Salcedo;F. Cebollada;J. J. Freijio;J. L. Munoz;A. Hernando
  24. PhD thesis W. Y. Lee