Microstructural Analysis of Anodic Oxide Layers Formed in a Boric Acid Solution for Al Electrolytic Capacitor Foils

붕산용액에서 형성된 알루미늄 전해콘덴서용 박의 화성피막 조직분석

  • Kim, Seong-Gap (School of Metallurgical and Materials Engineering, Kookmin University) ;
  • Kim, Seong-Su (Samyoung Electromics Co., Ltd.) ;
  • O, Han-Jun (Dept of Materials Engineering, Hanseo University) ;
  • Jo, Nam-Don (School of Metallurgical and Materials Engineering, Kookmin University) ;
  • Ji, Chung-Su (School of Metallurgical and Materials Engineering, Kookmin University)
  • 김성갑 (국민대학교 금속재료공학부) ;
  • 김성수 (삼영전자공업(주)) ;
  • 오한준 (한서대학교 재료공학과) ;
  • 조남돈 (국민대학교 금속재료공학부) ;
  • 지충수 (국민대학교 금속재료공학부)
  • Published : 2001.04.01

Abstract

Microstructures of barrier-type oxide layers on aluminum was studied by XRD, TEM and RBS. Fer formation of oxide layer. aluminum was anodized in a boric acid solution. The thickness of the oxide film subjected to applied voltage increased linearly at ratio of 1.54nm/V. For oxide layer anodized at 300V, amorphous structure of oxide layer was not transformed after heat treatment at 50$0^{\circ}C$ , while for oxide layers anodized at higher voltages the amorphous structure crystallized into a ${\gamma}$-alumina without any heat treatment. It was also found that the amorphous structure of oxide layer formed at 100V transformed into crystalline structure by electron irradiation. The structure was identified as ${\gamma}$-alumina.

붕산용액에서 양극산화법으로 장벽형 산화피막을 형성시킨 후 미세조직을 관찰하였다. 양극산화시 인가되는 전압에 따른 피막의 성장속도는 1.54nm/v의 직선적인 관계를 나타냈으며 300v의 인가전압에서 생성된 산화피막의 조직은 50$0^{\circ}C$에서 열처리하였을 경우 피막의 상 전이가 일어나지 않았으나 높은 인가전압에서 생성된 산화피막의 경우는 피막의 조직이 비정질에서 ${\gamma}$-alumina로 변태되는 것이 관찰되었다. 또한 피막이 전자빔 조사에 의해서도 ${\gamma}$-alumina로 전이가 일어났다.

Keywords

References

  1. S.Tajima, Advances in Corrosion Science and Technology, Vol 1, Plenum Press, New York, 229 (1980)
  2. V.F.Surganov, A.M.Mozakv, and LLMozaleva, R. J. Appl, Chem, 70,254 (1997)
  3. S.Ono, and N.Masuko, Corrosion Eng, 40, 579 (1992)
  4. 海老原, 表面技術協會 第14回講演要旨集 27 (997)
  5. T.Kudo, and R.S.Alwitt, Electrochim, Acta, 23, 341 (1978) https://doi.org/10.1016/0013-4686(78)80072-3
  6. K.Shimizu, and K.Kobayashi, J. Electrochem. Soc, 132,1384 (1985) https://doi.org/10.1149/1.2114127
  7. R.S.Alwitt ibid. 134(8), 1891 (1987)
  8. Y.Li, H.Shimada, M.Sakairi, K.Shigayo, H. Takahashi, and M.Seo, ibid, 144 (3), 866 (1997)
  9. 박경수, 大韓金屬學會報, 9, 589 (1996)
  10. 김성갑, 유인종, 신동철, 오한준, 지충수, 한국재료학회지, 10, 375 (2000)
  11. L.R.Doolittle, Nucl. Inst. Meth. 139,334 (1985)
  12. M.A.Paez, O.Bustos, G.E.Thompson, P.Skeldon, K. Shimizu, and G.C.Wood, J.Electrochem. Soc, 147, 1015 (2000) https://doi.org/10.1149/1.1393306
  13. A.P.Li, F.Muler, A.Birner, K.Niesch, and U.Gosele, J.Applied, Physics, 84, 6023 (1998)
  14. R.C.McCune, and H.K.Plummer, Surf, and Interface Analysis, 4,257 (1982) https://doi.org/10.1002/sia.740040608
  15. 小野幸子, 제91회 표면기술강연요지집 ,75 (1997)
  16. K.Shimizu, S.Tajima, J. Electrochim, Acta, 25, 259 (1980)
  17. J.M.Albella, I.Montero, and J.M.Martinez-duart, J. Materials. Sci, 26, 3422 (1991) https://doi.org/10.1007/BF00557127
  18. S.Tajima, Elecrochim. Acta, 22,1077 (1977) https://doi.org/10.1016/0013-4686(77)80042-X
  19. J.M.Albella, I.Montero, and J.M.Martinez-Duart, ibid. 32. 255 (1987)