The Oxidation of CrN Films Arc-ion Plated on a Steel Substrate

강 기판위에 아크이온 플레이팅된 CrN박막의 산화

  • Lee, Dong-Bok (Center for Advanced Plasma Surface Technology Sungkyunkwan University) ;
  • Lee, Yeong-Chan (Center for Advanced Plasma Surface Technology Sungkyunkwan University)
  • 이동복 (성균관대학교 플라즈마 응용표면기술 연구센터) ;
  • 이영찬 (성균관대학교 플라즈마 응용표면기술 연구센터)
  • Published : 2001.04.01

Abstract

CrN films were deposited onto STD61 steel substrates using an arc-ion plating apparatus, with and without ion-nitriding pretreatment, and their oxidation was studied between 700 and $900^{\circ}C$ for 40hr in air. The oxidation behavior was examined by thermogravimetric analyses, X-ray diffraction. EDS and SEM. The deposited CrN films consisted of CrN and $Cr_2$N phases. The CrN films increased the oxidation resistance of the substrate by forming a protective $Cr_2$$O_3$ layer. The ion-nitriding pretreatment has not affected the oxidation resistance of the CrN film.

아크이온 플레이팅 장치를 이용하여 STD61강 기판 위에 이온질화 전처리를 행하거나 하지 않은 후, CrN 박막을 증착하고, 대기중 $700~900^{\circ}C$의 온도에서 40시간동안 이들에 대한 산화거동을 연구하였다. 산화거동은 열중량분석기, X선회절기, EDS, SEM을 이용하여 조사하였다. 증착된 CrN박막은 CrN과 $Cr_2$N의 두 상으로 구성되어 있었다. CrN박막은 보호적 $Cr_2$O$_3$층을 형성하여 기판을 산화로부터 보호하였다. 이온질화처리는 CrN박막의 내산화성에 영향을 주지 않았다.

Keywords

References

  1. A. Aubert, and R. Gillet, Thin Solid Films, 108, 165 (1983) https://doi.org/10.1016/0040-6090(83)90501-1
  2. S. J. Bull, and D. S. Rickerby, Surf. Coat Technol., 43/44,732 (1990) https://doi.org/10.1016/0257-8972(90)90016-6
  3. B. Navinsek, P. Panjan, and A. Cvelbar, Surf. Coat. TechnoL, 74/75, 155 (1995) https://doi.org/10.1016/0257-8972(95)08214-X
  4. A. Kawana, and H. Ichimura, J. Mining & Mater. Proc. Inst. Jpn., 108, 868 (1992)
  5. T. Kacsich, K. P. Lieb, A. Schaper, and 0. Schulte, J. Phys.; Condens. Matter, 8, 10703 (1996) https://doi.org/10.1088/0953-8984/8/49/055
  6. W. D. Munz, and J. Gobel, Surf. Eng., 3, 47 (1987)
  7. D. Y. Kwon, C. G. Lee, J. K. Lee, W. S. Baek, and S. R. Lee, J. Kor. Inst. Met. & Mater., 34, 1230 (1996)
  8. B. Navinsek, and P. Panjan, Surf. Coat. Technol., 59,244 (1993) https://doi.org/10.1016/0257-8972(93)90091-2
  9. B. Navinsek, and P. Panjan, Thin Solid Films, 223, 4 (1993) https://doi.org/10.1016/0040-6090(93)90718-5
  10. H. Ichimura, J. Surf. Finish. Soc. Jpn., 45, 1090 (1994)
  11. H. Ichimura, and A. Kawana, J. Mater. Res., 9, 151 (1994) https://doi.org/10.1557/JMR.1994.0151
  12. S. Hofmann, Thin Solid Films, 193/194, 648 (1990) https://doi.org/10.1016/0040-6090(90)90216-Z
  13. T. Kacsich, and K. P. Lieb, Thin Solid Films, 235, 4 (1994) https://doi.org/10.1016/0040-6090(94)90868-0
  14. H. Benien, J. Maushart, M. Meyer, and R. Suchentrunk, Mater. Sci. Eng., A139, 126 (1991) https://doi.org/10.1016/0921-5093(91)90606-N
  15. E. Huber, and S. Hofmann, Surf. Coat. TechnoL, 68 /69, 64 (1994) https://doi.org/10.1016/0257-8972(94)90139-2
  16. M. Venkatraman, and J. P. Neumann, Binary Alloy Phase Diagrams, 2nd edit., vol. 2, ASM, Metals Park, OH, 1293 (1990)
  17. H. J. Park, S. Y. Lee, S. C. Yang, S. Y. Lee, S. S. Kim, and J. G. Han, J. Kor. Inst. Surf. Eng., 31, 334 (1998)
  18. A. M. Huntz, M. Aucouturier, and P. Lacombe, C. R. Acad. Sci. Paris, C256, 554 (1967)
  19. J. H. Woo, J. K. Lee, S. R. Lee, and D. B. Lee, Oxid. Met., 53, 529 (2000) https://doi.org/10.1023/A:1004685010393
  20. M. W. Brumm, and H. J. Grabke, Corro. Sci., 33, 1677 (1992) https://doi.org/10.1016/0010-938X(92)90002-K
  21. P. Panjan, B. Navinsek, A. Cvelbar, A. Zalar, and I. Milosev, Thin Solid Films, 281 /282, 298 (1996) https://doi.org/10.1016/0040-6090(96)08663-4
  22. I. C. I. Okafor, and R. G. Reddy, J. Met, 51 (6), 35 (1999)