신경망을 이용한 실시간 고장 진단 시스템

On-Line Fault Diagnosis System using Neural Network

  • 김문성 (대원과학대학 컴퓨터정보통신과) ;
  • 유승선 (한국에너지기술연구소) ;
  • 소정훈 (한국에너지기술연구소) ;
  • 곽훈성 (전북대학교 컴퓨터공학과)
  • 발행 : 2001.11.01

초록

본 논문에서는 신경망을 이용한 실시간 고장 검출 및 진단(FDD : Fault Detection and Diagnosis) 시스템을 제안한다. 제안된 시스템은 공조 시스템(FDD : Air Handling Unit)에서 발생 가능한 여러 고장들을 검출하고 진단할 수 있다. 고장 검출 및 진단 기법으로 3층 구조의 전방향(feed-forward) 신경망을 사용하였고, 여기에 사용된 학습 방법은 역전파(back-propagation) 학습 알고리즘이다. 공조 시스템에 적용된 실시간 고장 검출 및 진단 시스템은 비주얼 C++와 비주얼 베이직을 사용하여 구현하였다. 제안된 고장 검출 및 진단 시스템을 실제 운전 중인 공조 시스템에 적용하여 실험하였고, 정확한 고장 검출 및 진단이 수행됨을 실험 결과로서 입증하였다.

In this paper, we propose an on-line FDD(Fault Detection and Diagnosis) system based on the three layer feed-forward neural network which is trained by the back-propagation teaming algorithm. We implement the on-line fault detection and diagnosis system by Visual C++ and Visual Basic. The proposed FDD system is applied to an air handling unit in operation. Experimental results show the high performance of our system in the task of fault detection and diagnosis.

키워드