Expanding Generalized Hadamard Matrices over $G^m$ by Substituting Several Generalized Hadamard Matrices over G

  • Published : 2001.12.01

Abstract

Over an additive abelian group G of order g and for a given positive integer $\lambda$, a generalized Hadamard matrix GH(g, $\lambda$) is defined as a gλ$\times$gλ matrix[h(i, j)], where 1 $\leq i \leqg\lambda and 1 \leqj \leqg\lambda$, such that every element of G appears exactly $\lambd$atimes in the list h($i_1, 1) -h(i_2, 1), h(i_1, 2)-h(i_2, 2), …, h(i_1, g\lambda) -h(i_2, g\lambda), for any i_1\neqi_2$. In this paper, we propose a new method of expanding a GH(g^m, \lambda_1) = B = [B_{ij}] over G^m$ by replacing each of its m-tuple B_{ij} with B_{ij} + GH(g, $\lambda_2) where m = g\lambda_2. We may use g^m/\lambda_1 (not necessarily all distinct) GH(g, \lambda_2$)s for the substitution and the resulting matrix is defined over the group of order g.

Keywords