The Effect of Mechanochemical Treatment of the Catalyst in the Preparation of Carbon Nanotubes and their Electrical Properties

탄소나노튜브 합성 및 전기적 특성에 미치는 촉매의 메카노케미컬 처리효과

  • 유형균 (한국화학연구원 화학소재연구부) ;
  • 류호진 (한국화학연구원 화학소재연구부) ;
  • ;
  • 이병일 (유니셈주식회사)
  • Published : 2001.12.01

Abstract

We report the mechanochemical effect of an Fe(NO$_3$)$_3$$.$9H$_2$O-Al(OH)$_3$sample as catalytic precursor mixed-ground by mixer mill on the growth of carbon nanotubes using thermal chemical vapor deposition method. From and TEM observations, carbon products grown on a ground catalyst were more uniform than those grown on an unground catalyst and most of them were identified as carbon nanobubes. Also, it was observed that field emission properties of products on ground catalyst were superior to those of unground catalyst.

열화학기상증착법으로 탄소나노튜브를 합성할 때, 촉배전구체로 사용하는 Fe(NO$_3$)$_3$.9$H_2O$-Al(OH)$_3$혼합물을 믹서밀을 이용하여 혼합분쇄한 후, 이 혼합물을 사용하영 합성에 미치는 메카노케미컬 효과를 조사하였다. SEM과 TEM 관찰 결과, 분쇄된 촉매 위에서 합성된 탄소생성물이 미분쇄 촉매위에서 성장한 생성물에 비해 훨씬 균일했으며, 대부분의 생성물이 탄소나노튜브로서 존재하였다. 또한, 전류-전압 측정을 통해서, 분쇄 촉매에서의 생성물의 전계 방출 특성이 미분쇄 촉매에서보다 우수함을 확인하였다.

Keywords

References

  1. Nature v.354 Helical Microtubules of Graphitic Cabon S. Iijima
  2. Ann. Clim Sci. Mat. v.25 no.7 Carbon Nanotubes;Exceptional Mechanical and Electronic Properties S. Roche
  3. J. Kor. Ceram. Soc. v.37 no.4 Characterization of Nanostructure and Electronic Properties of Catalytically Grown Carbon Nanofiber M.S. Kim;W.J. Woo;H.S. Song;Y.S. Lee;J.C. Lee
  4. J. Phys. Chem. Solids v.61 no.7 Mechanical and Physical Properties on Carbon Nanotube S. Xie;W. Li;Z. Pan;B. Chang;L. Sun
  5. Chem. Phys. Lett. v.278 no.1-3 Single-wall Carbon Nanotube Formation by Laser Ablation using Double-targets of Carbon and Metal M. Yudasaka;T. Komatsu;T. Ichihashi;S. Iijima
  6. Synth. Met. v.70 no.1-3 Synthesis of Single and Multi-shell Carbon Nanotubes J.M. Lambert;P. Bernier;P.M. Ajayan
  7. Chem. Phys. Lett. v.327 no.5-6 Low-temperature Growth of Carbon Nanotubes by Thermal Chemical Vapor Deposition using Pd, Cr and Pt as Co-Catalyst C.J. Lee;J. Park;J.M. Kim;Y. Huh;J.Y. Lee;K.S. No
  8. Diam. Relat. Mater. v.8 no.2-5 Carbon Nanostructures and Diamond Growth by HFCVD;Role of the Substrate Preparation and Synthesis Conditions A.M. Bonnot;M. Deldom;E. Beaugnon;T. Fournier;M.C. Schouler;M. Mermoux
  9. Carbon v.38 no.2 Control of Pore Structure in Carbon T. Kyotani
  10. Kor. J. Chem. Eng. v.18 no.2 Effects of Bimetallic Catalyst Composition and Growth Parameters on the Growth Density and Diameter of Carbon Nanotubes A.K.M.F. Kibria;Y.H. Mo;M.H. Yun;M.J. Kim;K.S. Nahm
  11. J. Mater. Chem. v.9 Some Recent Developments in Mechanical Activation and Mechanosynthesis E. Gaffet;F. Bernard;J.C. Niepce;F. Charot;C. Gras;G.L. Caer;J. L. Guichard;P. Delcroix;A. Mocellin;O. Tillement
  12. Prog. Mater. Sci. v.46 no.1-2 Mechanical Alloying and Milling C. Suryanaryana
  13. J. Kor. Ceram. Soc. v.34 no.2 Mixed Grinding Effect on Kaolinite-aluminum Trihydroxide Mixture and Its Influence on Mullite Formation H. Ryu
  14. J. Kor. Ceram. Soc. v.38 no.10 Preparation of Carbon Nanomaterials by Thermal CVD and their Hydrogen Storage Properties H.K. Yu;W-K. Choi;H. Ryu;B. Lee
  15. Chem. Phys. Lett. v.335 no.1-2 Production of Short Carbon Nanotubes with Open Tips by Ball Milling N. Pierard;A. Fonseca;Z. Kona;I. Willems;G.V. Tendeloo;J.B. Nagy
  16. Carbon v.37 no.3 Transformation of Carbon Nanotubes to Nanoparticles by Ball Milling Process Y.B. Li;B.Q. Wei;J. Liang;Q. Yu;D.H Wu
  17. Chem. Phys. Lett. v.327 no.1-2 Enhanced Saturation Lithium Composition in Ball-milled Single-walled Carbon Nanotubes B. Gao;C. Bower;J.D. Lorentzen;L. Fleming;A. Kleinhammes;X.P. Tang;L.E.M.Neil;Y. Wu;O. Zhou
  18. Zeolites v.17 no.5-6 Catalytic Synthesis of Carbon Nanotubes using Zeolite Support K. Hernadi;A. Fonseca;J.B. Nagy;D. Bernaerts;A. Fudala;A.A. Lucas
  19. Appl. Phys. Lett. v.75 no.6 Large Current Density from Carbon Nanotube Field Emitters W. Zhu;C. Bower;O. Zhou;G. Kochansk;S. Jin
  20. Appl. Phys. Lett. v.70 no.24 Field Emission from Nanotube Bundle Emitters at Low Field Q.H. Wang;T.D. Corrigan;J.Y. Dai;R.P.H. Chang;A.R. Kranss
  21. Diam. Relat. Mater v.9 no.3-6 Energy Distribution of Field Emitted Electrons from Carbon Nanotubes R. Schlesser;R. Collazo;C. Bower;O. Zhou;Z. Sitar
  22. Chem. Phys. Lett. v.337 no.4-6 Growth and Field Emission of Carbon Nanotubes on Sodalime Glass at 550°C Using Thermal Chemical Vapor Deposition C. Lee;J. Park;S. Han;J. Ihm