M-IDEALS AND PROPERTY SU

  • Published : 2001.01.01

Abstract

X and Y are Banach spaces for which K(X, Y), the space of compact operators from X to Y, is an M-ideal in L(X, Y), the space of bounded linear operators form X to Y. If Z is a closed subspace of Y such that L(X, Z) has property SU in L(X, Y) and d(T, K(X, Z)) = d(T, K(X, Y)) for all $T \in L(X, Z)$, then K(X, Z) is an M-ideal in L(X, Z) if and only if it has property SU is L(X, Z).

Keywords

References

  1. Ann. of Math. v.96 Structure in real Banach spaces E. M. Alfsen;E. G. Effros
  2. Pacific J. Math. v.138 no.2 M-ideals of Compact Operators C.-M. Cho
  3. Canad. Math. Bull. v.32 A Note on M-ideals of Compact Operators C.-M. Cho
  4. J. Operator Theory. v.16 M.-ideals and ideals in L(X) C.-M. Cho;W. B. Johnson
  5. Proc. Amer. Marg. Soc. v.93 A Characterization of subspaces X of $ℓ_p$ for which K(X) is an M-ideal in L(X) C.-M. Cho;W. B. Johnson
  6. Trans. Amer. Math. Soc. v.283 Banach spaces which are M-ideals in their biduals P. Harmand;A. Lima
  7. Lecture Notes in Mathematics no.1547 M-ideals in Banach spaces and Banach Algebras P. Harmand;D. Werner;W. Werner
  8. Indiana Univ. Math. J. v.28 HB-subspace, and compact operator J. Hennefeld
  9. Pacific. J. Math. v.46 A decomposition for B(X) and unique Hahn-Banach extensions J. Hennefeld
  10. Illinois J. Math. v.37 M-ideals of compact operators N. J. Kalton
  11. Proc. R. Soc. Edinburgh The M-ideal structure of some algebra of bounded linear operators N. J. Kalton;D. Werner
  12. Trans. Amer. Math. Soc. v.227 Intersection properties of balls and subspaces of Banach spaces A. Lima
  13. Math. Scand. v.44 M-ideals of compact operators in classical Banach spaces A. Lima
  14. Math. Scand. v.53 Uniqueness of Hahn-Banach estensions and liftings of linear dependences A. Lima
  15. Studia Math. v.133 no.2 Ideals of finite rank operators intersection properties of balls, adn the approximation property A. Lima;E. Oja
  16. Mat. Zametki;Math. Notes v.43 Strong uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem E. F. Oja
  17. C. R. Acad. Sci. Paris v.309 Dual de l'espace des operateurs lineaires E. F. Oja
  18. Studia Math. v.117 On subspaces of Banach spaces where every functional has a unique norm-preserving estension E. Oja;M. Poldvere
  19. Proc. Royal Soc. Edinburgh v.129 Intesection properties of ball sequences and uniqueness of Hahn-Banach extensions E. Oja;M. Poldvere
  20. Trans. Amer. Math. Soc. v.95 Uniqueness of Hahn-Banach extensions and unique best approximation R. Phelps
  21. J. Func. Anal. v.27 M-ideal theory to quotient Banach algebras R. R. Smith;J. D. Ward
  22. J. Math. Oxford. v.30 no.2 Applications of convexity and M-ideal theory to quotient Banach algebras R. R. Smith;J. D. Ward
  23. J. Approx. Theory v.76 M-ideals and the basic inequality' D. Werner