Synthesis of Polyrotaxane-biotion Conjugates and Surface Plasmon Resonance Analysis of Streptavidin Recognition

  • Ooya, Tooru (School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi Ishikawa 923-1292, Japan) ;
  • Kawashima, Tomokatsu (School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi Ishikawa 923-1292, Japan) ;
  • Yui, Nobuhiko (School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi Ishikawa 923-1292, Japan)
  • Published : 2001.07.01

Abstract

A polyrotaxane-biotin conjugate was synthesized and its interaction with streptavidin measured using surface plasmon resonance(SPR) detection. A biodegradable polyrotaxane in which ca, 22 molecules of ${\alpha}$-cyclodextrina(${\alpha}$-CDs) were threaded onto a poly(ethylene oxide) chain(M$\sub$n:4,000) capped with benzyloxycarbonyl-L-phenylalanine was conjugated with a biotin hydorazide and 2-aminoethanol after activing the hydroxyl groups of ${\alpha}$-CDs in the polyrotaxane using N, N'-carbonyldiimidazole. The results of the high-resolution $^1$H-nyclear lmagnetic resonance($^1$H-NMR)spectra and gel permeation chromatography of the conjugate showed that ca, 11 biotin molecules were actually introduced to the polyrotaxane scaffold. An SPR analysis showed that the binding curves of the biotin molecules in the conjugate on the streptavidin-deposited surface changed in a concentration dependent manner, indicating that the biotin in the conjugate was ac-tually recognized by streptavidin. The association equilibrium constant(K$\sub$a/) of the interaction be-tween the conjugate and steptavidin tetramer was of the order 10$\^$7/. These results suggest that polyrotaxane is useful for scaffolds as a polymeric ligand in biomedical fields.

Keywords

References

  1. Chem. Res. v.96 Glycobiology: Toward understanding the functions of sugars Dwek, R. A.
  2. Glycobiology v.3 Biological roles of oligosaccharides: all of the theories are correct Varki, A.
  3. Chem. Biol. v.3 Strength in numbers: non-natural polyvalent carbohydrate derivatives Kiessling, L. L.;N. L. Pohl
  4. J. Biol. Chem. v.258 Binding of synthetic oligosaccharides to hepatic Gal/GalNAc lectin. Dependence on fine structural features Lee, Y. C.;R. R. Townsend;M. R. Hardy;J. Lonngren;J. Arnarp;M. haraldsson;H. Lonn
  5. Curr. Opin. Chem. Biol. v.4 Synthetic multivalent ligands in the exploration of cell-surface interactions Kiessling, L. L.;N. L. Pohl
  6. Bioconjugte Chem. v.10 Multivalent thioether-peptide conjugates: B cell tolerance of an anti-peptide immune response Jones, D. S.;S. M. Coutts;C. A. Gamino;G. Michael Iverson;M. D. linnik;M. E. Randow;H.-T. Ton-Nu;E. J. victoria
  7. Bioconjugte Chem. v.10 Combtype prepolymers consisting of a polyacrylamide backbone and poly(L-lysine) graft chains for multivalent ligands Asayama, S.;A. Maruyama;T. Akaike
  8. Bioconjugte Chem. v.10 Inhibition of viral adhesion and infection by sialic-acid-conjugated dendritic polymers Reuter, J. D.;A. Myc;M. M. Hayes;Z. Gan;R. Roy;D. Qin;R. Yin;L. T. Piehler;R. Esfand;D. A. Tomalia;J. R. Baker, Jr.
  9. J. Am. Chem. Sco. v.119 Varying the size of multivalent ligands: The dependence of Concanavarin A binding on neoglycopolymer length Kanai, M.;K. H. Mortell;L. L. Kiessling
  10. J. Am. Chem. Soc. v.120 Probing low affinity and multivalent interactions with surface plasmon resonance: Ligand for Concanavarin A. Mann, D. A.;M. Kanai;D. J. Maly;L. L. Kiessling
  11. Science v.284 Vancomycin derivatives that inhibit peptideglycan biosynthesis without binding D-Ala-D-Ala Ge, M.;Z. Chen;H. R. Onishi;J. Lohler;L. L. Silver;R. Kerns;S. Fukuzawa;C. Thompson;D. Kahne
  12. Nature v.403 Shiga-like toxins neutralized by tailored multivalent carbohydrate ligands Kitov, P. I.;J. M. Sadowska;G. M. Whitesides
  13. J. Am. Chem. Soc. v.122 High-affinity pentavalent ligands of Escherichia coli hear-labile enterooxin by molecular structure-based design Fan, E. K.;Z. S. Zhang;W. E. Minke;Z. Hou;C. Verlinde;W. G. J. Hol
  14. Chem. Commun. Multi-valent polymer of vancomycin: enhanced antibacterial activity against VRE Arimoto, H.;K. Nishimura;T. Kinumi;I. Hayakawa;D. Uemura
  15. Supramolecular Design for Biological Applications Yui, N.(ed.)
  16. Biomacromolecules v.1 Synthesis of starlike N-(2-hydroxypropyl)methacrylamide copolymers: Potential drug carriers Wang, D.;P. Kopeckova;T. Minko;V. Nanayakkara;J. Kopecek
  17. J. Contr. Rel. v.63 Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers Jeong, B.;Y. H. Bae;S. W. Kim
  18. Crit. Rev. Ther. Drug Carrier Syst. v.16 Polyrotaxanes; synthesis, structure and potential in drug delivery Ooya, T.;N. Yui
  19. J. Biomater. Sci. Polym. Edn. v.8 Synthesis and characterization of biodegradable polyrotaxane as a novel supramolecular-structured drug carrier Ooya, T.;N. Yui
  20. Polym. Adv. Tech. v.11 Synthesis and characterization of an oligopeptide-terminated polyrotaxane as a drug carrier Ooya, T.;K. Arizono;N. Yui
  21. J. Contr. Rel. v.58 Synthesis of a theophylline-polyrotaxane conjugate and its drug release via supramolecular dissociation Ooya, T.;N. Yui
  22. Biomacromolecules v.2 Enhanced accessibility of peptide substrate toward a membrane-bound metalloexopeptidase by supramolecular structure of polyrotaxane Ooya, T.;M. Eguchi;N. Yui
  23. Biomacromolecules v.2 Control-lable erosion time and profile in poly(ethylene glycol) hydrogels by supramolecular structure of hydrolyzable polyrotaxane Ichi, T.;J. Watanabe;T. Ooya;N. Yui
  24. Macromol. Chem. Phys. v.199 Supramolecular dissociation of biodegradable polyrotaxanes by terminal hydrolysis Ooya, T.;N. Yui
  25. Adv. Protein Chem. v.29 Avidin Green, N. M.
  26. J. Biol. Chem. v.274 Poly(L-lysine)-graft-dextran copolymer promotes pyrimidine motif triplex DNA formation at physiological pH Torigoe, H.;A. Ferdous;H. Watanabe;T. Akaike;A. Maruyama
  27. Biotechnol. Bioeng. v.58 A novel biotylated degradable polymer for cell-interactive applications Cannizzaro, S. M.;R. F. Padera;R. Langer;R. A. Rogers;F. E. Black;M. C. Davis;S. J. B. Tendler;K. M. Shakesheff
  28. Tetrahedron Lett. v.40 Direct observation of binding between biotylated okadaic acids and protein phosphatase 2A monitored by surface plasmon resonance Konoki, K.;N. Sugiyama; M. Murata;K. Tachibana
  29. Langmuir v.15 Interfacial properties of biotin conjugate-avidin complexes studied by acoustic wave sensor Ghafouri, S.;M. Thompson
  30. Macromolecules v.23 Complex formation between poly(ethylene glycol) and α-cyclodextrin Harada, A.;M. Kamachi
  31. Curr. Opin. Biotech v.5 Determination of kinetic rate and equilibrium binding constants for macromolceular interactions: a critique of the surface resonance literature O'Shannessy, D. J.
  32. Trends Anal. Chem. v.14 Detection and quantification of biomolecular interactions with optical biosensors Young, D.;A. Gill;C. H. Maule;R. J. Davies
  33. Biomaterials v.21 Surface plasmon resonance analysis of dynamic biological interactions with biomaterials Green, R. J.;R. A. Frazier;K. M. Shakesheff;M. C. Davies;C. J. Roberts;S. J. B. Tendler
  34. J. Mol. Cat. A: Chemical v.116 Neoglycopolymers produced by aqueous ring-opening metathesis polymerization: decreasing saccharide density increases activity Schuster, M. C.;K. H. Mortell;A. D. Hegeman;L. L. Kiessling
  35. Proc. Natl. Acad. Sci. USA v.96 Nonstatistical binding of a protein to clustered carbohydrates Horan, N.;L. Yan;H. Isobe;G. M. Whitesides;D. Kahne
  36. J. Biol. Chem. v.275 Binding of multivalent carbohydrates to concanavalin A and Dioclea grandiflora lectin Dam, T. K.;R. Roy;S. K. Das;S. Oscarson;F. Brewer
  37. Tetrahedron: Asymmetry v.11 A comparison of biological and calorimetric analyses of multivalent glycodendrimer ligands for concanavalin A. Corbell, J. B.;J. J. Lundquist;E. J. Toone
  38. Polymer Preprints v.42 New concept of multivalent ligands: polyrotaxane-dipeptide conjugates as a specific inhibitor of intestinal peptide transporter PepT1 Ooya, T.;T. Kawashima;I. Tamai;Y. Saito;Y. Sai;A. Tsuji;N. Yui
  39. Proc. Int. Symp. Contr. Rel. Bioact. Mater. v.28 Targeting the intestinal biotin transporter to enhance the permeability of peptides and their biopolymeric conjugates Ramanathan, S.;S. Stein;M. Leibowitz;P. J. Sinko
  40. Proc. Int. Symp. Contr. Rel. Bioact. Mater. v.28 Targeting the sodium dependent multivitamin transporter (SMVT) in the blood-brain barrier (BBB) to increase the transport of biotin conjugated peptides and polymers Park, S.;S. Stein;P. J. Sinko