Recent Advances in Cellular Senescence, Cancer and Aging

  • Lim, Chang-Su (Life Sciences Division, Lawrence Berkeley National Laboratory, Mailstop 84-171, University of California, Berkeley, CA 94720, USA) ;
  • Judith Campisi (Life Sciences Division, Lawrence Berkeley National Laboratory, Mailstop 84-171, University of California, Berkeley, CA 94720, USA)
  • Published : 2001.07.01

Abstract

How much do we know about the biology of aging from cell culture studies Most normal somatic cells have a finite potential to divide due to a process termed cellular or replicative senescence. A growing body evidence suggests that senescence evolved to protect higher eu-karyotes, particularly mammals, from developing cancer, We now know that telomere shortening due to the biochemistry of DNA replication, induces replicative senescence in human cells. How-ever in rodent cells, replicative senescence occurs despite very long telomeres. Recent findings suggest that replicative senescence is just the tip of the iceberg of a more general process termed cellular senescence. It appears that cellular senescence is a response to potentially oncogenic in-sults, including oxidative damage. In young orgainsms, growth arrest by cell senescence sup-presses tumor development, but later in life, due to the accumulation of senescent cells which se-cret factors that can disrupt tissues during aging, cellular senescence promotes tumorigenesis. Therefore, antagonistic pleiotropy may explain, if not in whole the apparently paradoxical effects of cellular senescence, though this still remains an open question.

Keywords

References

  1. Exp. Gerontol. v.24 Levels of DNA methylation in diploid and SV40 transformed human fibroblasts. Matsumura, T.;F. Malik;R. Holliday
  2. Exp. Gerontol. v.31 Replicative senescence: Considerations relating to the stability of heterochromatin domains. Howard, B. H.
  3. Mutat. Res. v.256 Senescence and the accumulation of abnormal proteins. Rosenberger, R. F.
  4. Lancet v.Ⅰ Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Linnane, A. W.;S. Marzuki;T. Ozawa;M. Tanaka
  5. J. Am. Geriatr. Soc. v.20 The biological clock: The mitochondria? Harman, D.
  6. Exp. Cell. Res. v.25 The serial cultivation of human diploid cell strains. Hayflick, L.;P. S. Moorhead
  7. Eur. J. Cancer v.33 The biology of replicative senescence. Campisi, J.
  8. Mech. Ageing Dev. v.38 Cellular senescence revisited: A review. Stanulis-Praeger, B.
  9. Cell v.84 Replicative senescence: An old lives tale? Campisi, J.
  10. Exp. Cell Res. v.37 The limited in vitro lifetime of human diploid cell strains. Hayflick, L.
  11. Cancer, aging and cellular senescence. In vivo v.14 Campisi, J.
  12. Env. Health Perspect. v.93 Senescence as a mode of tumor suppression. Sager, R.
  13. Genes Dev. v.12 Overcoming cellular senescence in human cancer pathogenesis. Yeager, T. R.;S. DeVries;D. F. Jarrard;C. Kao;S. Y. Nakada;T. D. Moon;R. Bruskewitz;W. M. Stadler;L. F. Meisner;K. W. Golchrist;M. A. Newton;F. M. Waldman;C. Reznikoff
  14. The Molecular Basis of Cell Cycle and chemically Replicative senescence and immortalization. Campisi, J.;G. Stein(ed.);R. Baserga(ed.);A. Giordano(ed.);D. Denhardt (ed.)
  15. Carcinogen v.21 The role of senescence and immortalization in carcinogenesis. Reddel, R. R.
  16. Biochim. Biophys. Acta. v.458 The relationship between in vitro transformation and tumor formation in vivo. Ponten, J.
  17. Nat. Cell Biol. v.2 p16INKA and p19ARF act in overlapping pathways in cellular immortalization. Carnero, A.;J. D. Hudson;C. M. Price;D. H. Beach
  18. Nature v.396 Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Kiyono, T.;S. A. Foster;J. I. Koop;J. K. McDougall;D. A. Galloway;A. J. Klingelhutz
  19. Cancer Res. v.59 Role of the alternative INK4A proteins in human keratinocyte senescence: evidence for the specific inactivation of p16INK4A upon immortalization. Munro, J.;F. J. Stott;K. H. Vousden;G. Peters;E. K. Parkinson
  20. Cell v.88 Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Serrano, M.;A. W. Lin;M. E. McCurrach;D. Beach;S. W. Lowe
  21. Genes Dev. v.12 E1A signaling to p53 involves the p19(ARF) tumor suppressor. de Stanchina, E.;M. E. McCurrach;F. Zindy;S. Y. Shieh;G. Ferbeyre;A. V. Samuelson;C. Prives;M. F. Roussel;C. J. Sherr;S. W. Lowe
  22. Exp. Cell Res. v.220 Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? von Zglinicki, T.;G. Saretzki;W. Docke;C. Lotze
  23. Proc. Natl. Acad. Sci. USA v.92 Oxidative DNA damage and senescence of human diploid fibroblast cells. Chen, Q.;A. Fischer;J. D. Reagan;L. J. Yan;B. N. Ames
  24. J. Mol. Biol. v.225 Telomere end-replication problem and cell aging. Levy, M. Z.;R. C. Allsopp;A. B. Futcher;C. W. Greider;C. B. Harley
  25. Nature v.345 Telomeres shorten during ageing of human fibroblasts. Harley, C. B.;A. B. Futcher;C. W. Greider
  26. Nature v.346 Telomere reduction in human colorectal carcinoma and with ageing. Hastie, N.D.;M. Dempster;M. G. Dunlop;A. M. Thompson;D. K. Green;R. C. Allshire
  27. Proc. Natl. Acad. Sci. USA v.89 Telomere length predicts replicative capacity of human fibroblasts Allsopp, R. C.;H. Vaziri;C. Patterson;S. Goldstein;E. V. Younglai;A. B. Futcher;C. W. Greider;C. B. Harley
  28. Science v.279 Extension of life-span by introduction of telomerase into normal human cells Bodnar, A. G.;M. Ouellette;M. Frolkis;S. E. Holt;C. P. Chiu;G. B. Morin;C. B. Harley;J. W. Shay;S. Lichtsteiner;W. E. Wright
  29. Curr. Biol. v.8 Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span Vaziri, H.;S. Benchimol
  30. J. Am. Geriatr. Soc. v.20 The biological clock: The mitochondria? Harman, D.
  31. Nature v.267 Low oxygen concentration extends the lifespan of cultured human diploid cells Packer, L.;K. Fuehr
  32. Proc. Natl. Acad. Sci. USA v.87 Oxidative damage to DNA during aging: 8-Hydroxy-2'-deoxyguanosine in rat organ DNA and urine Fraga, C. G.;M. Shigenaga;J. W. Park;P. Degan;B. N. Ames
  33. Physiol. Rev. v.78 The free radical theory of aging matures Beckman, K. B.;B. N. Ames
  34. Biochem. J. v.332 Molecular analysis of H₂O₂-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication Chen, O. M.;J. C. Bartholomew;J. Campisi;M. Acosta;J. D. Reagan;B. N. Ames
  35. Oncogene v.16 Agents that cause DNA double trand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts Robles, S. J.;G. R. Adami
  36. Exp. Gerontol. v.36 From cells to organisms: Can we learn about aging from cells in culture? Campisi, J.
  37. Genes Dev. v.12 Senescence of human fibroblasts induced by on-cogenic raf. Zhu, J.;D. Woods;M. McMahon;J. M. Bishop
  38. Mol. Cell. Bio. v.20 Regulation of a Senescence checkpoint response by the E2F1 transcription factor and p14ARF tumor suppressor Dimri, G, P.;K. Itahana;M. Acosta;J. Campisi
  39. J. Biol. Chem. v.274 Ras proteins induce senescence by altering the intracllular levels of reactive oxygen species Lee, A. C.;B. E. Fenster;H. Ito;K. Takeda;N. S. Bae;T. Hirai;Z. X. Yu;V. J. Ferrans;B. H. Howard;T. Finkel
  40. Cancer Res. v.59 Expression of catalytically active telomerase does not prevent premature senescence caused by overexpression of oncogenic Ha-Ras in normal human fibroblasts Wei, S.;S. Wei;J. M. Sedivy
  41. Mol. Cell. Biol. v.16 Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent Ogryzko, V. V.;T. H. Hirai;V. R. Russanova;D. A. Barbie;B. H. Howard
  42. Nature v.397 The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus Jacobs, J. J.;K. Kieboom;S. Marino;R. A. DePinho;M. van Lohuizen
  43. Mol. Biol. Cell v.10 Modulation of life-span by histone deacetylase genes in Saccharomyces cerevisiae Kim, S.;A. Benguria;C. Y. Lai;S. M. Jazwinski
  44. Genes Dev. v.14 Sir2 links chromatin silencing, metabolish, and aging Guarente, L.
  45. Cell v.91 Telomere shortening and tumor formation by mouse cells lacking telomerase RNA Blasco, M. A.;H. W. Lee;M. P. Hande;E. Samper;P. M. lansdorp;R. A. DePinho;C. W. Greider
  46. Nature v.392 Essential role of mouse telomerase in highly proliferative organs. Lee, H. W.;M. A. Blasco;G. J. Gottlieb;J. W. Horner;C. W. Greider;R. A. DePinho
  47. Nature v.402 A telomerase component is defective in the human disease dyskeratosis congenita. Mitchell, J. R.;E. Wood;K. Collins
  48. Cell v.102 Cellular senescence: mitotic clock or culture shock? Sherr, C. J.;R. A. DePinho
  49. Nature v.6 Telomere dynamics in cancer progression and prevention: fundamental differ-ences in human and mouse telomere biology. Wright, W. E.;J. W. Shay
  50. J. Exp. Med. v.160 Oxygen modulates growth of human cells at physiologic partial pressures. Balin, A. K.;A. J. Fisher;D. M Carter
  51. Exp. Cell Res. v.217 The effect of low oxygen tension on the in vitro-replicative life span of human diploid fibroblast cells and their transformed derivatives. Saito, H.;A. T. Hammond;R. E. Moses
  52. Proc. Natl. Acad. Sci. USA v.78 Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo. Rohme, D.
  53. Nature v.402 The p66shc adaptor protein controls oxidative stress response and life span in mammals. Migliaccio, E.;M. Giorgio;S. Mele;G. Pelicci;P. Reboldi;P. P. Pandolfi;L. Lanfrancone;P. G. Pelicci