• Title/Summary/Keyword: telomeres

Search Result 51, Processing Time 0.031 seconds

Epigenetic aspects of telomeric chromatin in Arabidopsis thaliana

  • Lee, Won Kyung;Cho, Myeon Haeng
    • BMB Reports
    • /
    • v.52 no.3
    • /
    • pp.175-180
    • /
    • 2019
  • Telomeres are nucleoprotein complexes at the physical ends of linear eukaryotic chromosomes. They protect the chromosome ends from various external attacks to avoid the loss of genetic information. Telomeres are maintained by cellular activities associated with telomerase and telomere-binding proteins. In addition, epigenetic regulators have pivotal roles in controlling the chromatin state at telomeres and subtelomeric regions, contributing to the maintenance of chromosomal homeostasis in yeast, animals, and plants. Here, we review the recent findings on chromatin modifications possibly associated with the dynamic states of telomeres in Arabidopsis thaliana.

Telomeres Distribution and Telomerase Activity During Chick Embryonic and Developmental Stages

  • Cho, E.J.;Kang, M.Y.;Jung, G.S.;Sohn, S.H.
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.111-111
    • /
    • 2003
  • Telomeres are the end of chromosomes and consist of a tandem repeat sequence of (TTAGGG)n and associated proteins. Telomerase is a ribonucleoprotein which act as a template for the synthesis of telomeric DNA. Telomeres are essential for chromosome stability and are related with cell senescence, apoptosis and cancer. Even though telomeres and telomerase have been studied extensively, very little is known about telomere dynamics in embryonic cells. This study was carried out to analyze the telomeres distribution and telomerase activity of chicken cells during embryonic and developmental stages. The target cells for analysing were sperms, ovulated ova, early embryonic cells and the cells from brain, heart, liver, kidney and germinal tissue in fetus. Telomeres distribution on target cells was analyzed by Q-FISH (Quantitation-Fluorescence in situ Hybridization) techniques using a chicken telomere repeat probe. Telomerase activity was performed by TRAP assay (Telomeric repeat Amplification Protocol) with target DNA. In results, the telomeres of chicken were found at the ends of all chromosomes. In addition, chicken had interstitial telomeres on chromosomes 1, 2 and 3. Telomerase activity was highly detectable in early embryonic cells, germinal tissues and kidney cells. Whereas telomerase activity was gradually down-regulated when the organs, including brain, heart, and liver, were developed from embryos. In the distribution of telomeric DNA on the embryonic and developmental stages, most of the cells was gradually decreased in telomere quantity during ontogenesis.

  • PDF

The Amount of Telomeres and Telomerase Activity on Chicken Embryonic Cells During Developmental Stages (닭의 발생 단계별 세포내 Telomere의 양적 분포양상과 Telomerase 활성도 분석)

  • Cho, E.J.;Choi, C.H.;Sohn, S.H.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.187-194
    • /
    • 2005
  • Telomeres locate at the end of chromosomes and consist of a tandem repeat sequence of $(TIAGGG)^{n}$ and associated proteins. Telomerase is a ribonucleoprotein which act as a template for the synthesis of telomeric DNA. Telomeres are essential for chromosome stability and are related with cell senescence, apoptosis and cancer. This study was carried out to analyze the amount of telomeres and telomerase activity of chicken cells during embryonic and developmental stages. The whole embryos and prenatal tissues such as brain, heart, liver, kidney and testis at different developmental stages were obtained from Korean Native Chicken. The amount of telomeres on embryonic cells was analyzed by quantitative fluorescence in situ hybridization (Q-FISH) techniques using the chicken telomeric DNA probe. Telomerase activity was measured by telomeric repeat amplification protocol (TRAP) assay. Results indicated that the amounts of telomeric DNA on the most embryonic cells were gradually decreased during ontogenesis. Furthermore, the quantity of telomeres was quite different among embryonic tissues according to developmental origin. The relative amount of telomeres has more in regenerative cells such as embryonic disc and testicular cells than in non-regenerative cells such as liver, brain, heart and kidney cells. Telomerase activity was also highly detectable in most chicken cells at early embryonic stages. After 9 days of incubation, however, the telomerase activitie W

Kidneys with bad ends (신장 기능과 틸로미어)

  • Suh, Dong-Chul
    • Childhood Kidney Diseases
    • /
    • v.12 no.1
    • /
    • pp.11-22
    • /
    • 2008
  • Telomeres consist of tandem guanine-thymine(G-T) repeats in most eukaryotic chromosomes. Human telomeres are predominantly linear, double stranded DNA as they ended in 30-200 nucleotides(bases,b) 3'-overhangs. In DNA replication, removal of the terminal RNA primer from the lagging strand results in a 3'-overhang of uncopied DNA. This is because of bidirectional DNA replication and specificity of unidirectional DNA polymerase. After the replication, parental and daughter DNA strands have unequal lengths due to a combination of the end-replication problem and end-processing events. The gradual chromosome shortening is observed in most somatic cells and eventually leads to cellular senescence. Telomere shortening could be a molecular clock that signals the replicative senescence. The shortening of telomeric ends of human chromosomes, leading to sudden growth arrest, triggers DNA instability as biological switches. In addition, telomere dysfunction may cause chronic allograft nephropathy or kidney cancers. The renal cell carcinoma(RCC) in women may be less aggressive and have less genomic instability than in man. Younger patients with telomere dysfunction are at a higher risk for RCC than older patients. Thus, telomeres maintain the integrity of the genome and are involved in cellular aging and cancer. By studying the telomeric DNA, we may characterize the genetic determinants in diseases and discover the tools in molecular medicine.

  • PDF

Telomere의 양적 분석을 이용한 닭의 bio-marker개발

  • 조은정;최철환;전익수;박철;손시환
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2004.11a
    • /
    • pp.13-15
    • /
    • 2004
  • Telomeres are the end of chromosomes and consist of a tandem repeat sequence of (TTAGGG)n and associated proteins. Telomeres are essential for chromosome stability and are related with cell senescence and apoptosis. This study was carried out to analyze the amount of telomeric DNA of chicken lymphocytes, which is to considered as bio-marker. The amount of telomeric DNA of lymphocytes in Korean Native Chicken and White Leghorn was analyzed by quantitative-fluorescence in situ hybridization (Q-FISH) technique using the chicken telomeric DNA probe. Telomere quantifies were compared among breeds, ages and sex, and the relationship between the amount of telomeres and their productive trait was also analyzed. Comparing the amount of telomeric DNA on lymphocytes during growing period, the amount of telomeres was gradually decreased as growing older. The telomere quantity was also significantly different in breeds and sex. Estimating correlation coefficient, the amount of telomeres was positively correlated to sexual maturity and body weight but negatively correlated to hen day egg production and egg weight. These results implicate the telomere quantity is considered as an individual bio-marker.

  • PDF

Analysis of the Amount of Telomeric DNA and Telomerase Activity on Preimplantation Mouse Embryoic Cells (마우스 수정란의 초기 배 발생단계별 Telomeric DNA의 양적 분석과 Telomerase 활성도 분석)

  • Kang M. Y.;Han M. S.;Lee S. C.;Kim J. H.;Sohn S. H.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Telomeres consisting of (TTAGGG)n tandem repeat DNA sequences and associated proteins are essential for chromosome stability and related with cell senescence, apoptosis and cancer. The telomerase is a ribonucleoprotein which act as a template for the synthesis of telomeric DNA. This study was carried out to identify the distribution of telomeres on mouse chromosomes and also to analyze the amount of telomeres and telomerase activity of mouse embryos at early embryonic stages. Germ cells and early embryos from 1 cell to blastocyst stage were analyzed. The amount of telomeres was analyzed by quantitative fluorescence in situ hybridization technique(Q-FISH) using a human telomeric DNA probe, and telomerase activity was measured by telomeric repeat amplification protocol assay(TRAP). In results, the telomeres on mouse chromosomes were distributed at the ends of all autosomes and sex chromosomes. Although the quantity of telomeres varied among chromosomes, most of chromosomes had higher amount in q-arm telomeres than in p-arm telomeres. The results of Q-FISH indicated that the relative amount of telomeres of mouse embryos in each embryonic stage was approximately the same except the higher amount in blastocysts. Using TRAP assay on mouse embryos, telomerase activity was detected in all preimplantation stages from mature oocytes to blastocysts. Especially the telomerase activity was significantly increased at the morula and blastocyst stage. In conclusion, there may be a close association between the amount of telomeres and telomerase activity in early embryonic stages, and analysis of telomere quantity and telomerase activity on early development will be helpful for the investigation of embryogenesis and embryonic cell differentiation in mice.

Telomere association of Oryza sativa telomere repeat-binding factor like 1 and its roles in telomere maintenance and development in rice, Oryza sativa L.

  • Byun, Mi Young;Cui, Li Hua;Lee, Hyoungseok;Kim, Woo Taek
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.578-583
    • /
    • 2018
  • Telomeres are specialized nucleoprotein complexes that function to protect eukaryotic chromosomes from recombination and erosion. Several telomere binding proteins (TBPs) have been characterized in higher plants, but their detailed in vivo functions at the plant level are largely unknown. In this study, we identified and characterized OsTRFL1 (Oryza sativa Telomere Repeat-binding Factor Like 1) in rice, a monocot model crop. Although OsTRFL1 did not directly bind to telomere repeats $(TTTAGGG){_4}$ in vitro, it was associated with telomeric sequences in planta. OsTRFL1 interacted with rice TBPs, such as OsTRBF1 and RTBP1, in yeast and plant cells as well as in vitro. Thus, it seems likely that the association of OsTRFL1 with other TBPs enables OsTRFL1 to bind to telomeres indirectly. T-DNA inserted OsTRFL1 knock-out mutant rice plants displayed significantly longer telomeres (6-25 kb) than those (5-12 kb) in wild-type plants, indicating that OsTRFL1 is a negative factor for telomere lengthening. The reduced levels of OsTRFL1 caused serious developmental defects in both vegetative and reproductive organs of rice plants. These results suggest that OsTRFL1 is an essential factor for the proper maintenance of telomeres and normal development of rice.

Replicative Senescence in Cellular Aging and Oxidative Stress (세포 노화에 있어서 복제 세네센스 현상과 산화적 스트레스의 영향)

  • 박영철
    • Toxicological Research
    • /
    • v.19 no.3
    • /
    • pp.161-172
    • /
    • 2003
  • Explanted mammalian cells perform a limited number of cell division in vitro and than are arrested in a state known as replicative senescence. Such cells are irreversibly blocked, mostly in the G1 phase of cell cycle, and are no longer sensitive to growth factor stimulation. Thus replicative senescence is defined as a permanent and irreversible loss of replicative potential of cells. For this characteristic, replicative senescence seems to evolve to protect mammalian organism from cancer. However, senescence also contributes to aging. It seems to decrease with age of the cell donor and, as a form of cell senescence, is thought to underlie the aging process. Extensive evidence supports the idea that progressive telomere loss contributes to the phenomenon of cell senescence. Telomeres are repetitive structures of the sequence (TTAGGG)n at the ends of linear chromosomes. It has been shown that the average length of telomere repeats in human somatic cells decreases by 30∼200 bp with each cell division. It is generally believed that when telomeres reach a critical length, a signal is activated to initiate the senescent program. This has given rise to the hypothesis that telomeres act as mitotic clocks to regulate lifespan. One proposes that cumulative oxidative stress, mainly reactive oxygen species generated from mitochondria, may mainly cause telomere shortening, accelerating aging. Here, the biological importance and mechanism of replicative senescence were briefly reviewed. Also it was summarized that how oxidative stress affects replicative senescence and telomere shortening.

Age Prediction in the Chickens Using Telomere Quantity by Quantitative Fluorescence In situ Hybridization Technique

  • Kim, Y.J.;Subramani, V.K.;Sohn, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.5
    • /
    • pp.603-609
    • /
    • 2011
  • Telomeres are special structures at the ends of eukaryotic chromosomes. Vertebrate telomeres consist of tandem repeats of conserved TTAGGG sequence and associated proteins. Birds are interesting models for molecular studies on aging and cellular senescence because of their slow aging rates and longer life spans for their body size. In this longitudinal study, we explored the possibility of using telomeres as an age-marker to predict age in Single Comb White Leghorn layer chickens. We quantified the relative amount of telomeric DNA in isolated peripheral blood lymphocytes by the Quantitative Fluorescence in situ Hybridization technique on interphase nuclei (IQ FISH) using telomere-specific DNA probes. We found that the amount of telomeric DNA (ATD) reduced significantly with an increase in chronological age of the chicken. Especially, the telomere shortening rates are greatly increased in growing individuals compared to laying and old-aged individuals. Therefore, using the ATD values obtained by IQ FISH we established the possibility of age prediction in chickens based on the telomere theory of aging. By regression analysis of the ATD values at each age interval, we formulated an equation to predict the age of chickens. In conclusion, the telomeric DNA values by IQ FISH analyses can be used as an effective age-marker in predicting the chronological age of chickens. The study has implications in the breeding and population genetics of poultry, especially the reproductive potential.

Role of telomere length in subtelomeric gene expression and its possible relation to cellular senescence

  • Hernandez-Caballero, E.;Herrera-Gonzalez, N.E.;Salamanca-Gomez, F.;Arenas-Aranda, D.J.
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.747-751
    • /
    • 2009
  • Transcriptional silencing of subtelomeric genes is associated with telomere length, which is correlated with age. Long and short telomeres in young and old people, respectively, coincide with gene repression and activation in each case. In addition, differential location of genes with respect to telomeres causes telomere position effect. There is very little evidence of the manner in which age-related telomere length affects the expression of specific human subtelomeric genes. We analyzed the relationship between telomere length and gene expression levels in fibroblasts derived from human donors at ages ranging from 0-70 years. We studied three groups of genes located between 100 and 150 kb, 200 and 250 kb, and >300 kb away from telomeres. We found that the chromatin modifier-encoding genes Eu-HMTase1, ZMYND11, and RASA3 were overexpressed in adults. Our results suggest that short telomere length-related overexpression of chromatin modifiers could underlie transcriptional changes contributing to cellular senescence.