Antibacterial Effect of the Surface-Modified Biomedical Polyurethane against Staphylococcus aureus and Staphylococcus epidermidis

  • Jeon, Sung-Min (Department of Biology, Sangmyung University & Cardiovascular Research Center, Institute of Biomedlab Co.) ;
  • Kim, Hyun-Jung (Cardiovascular Research Center, Institute of Biomedlab Co.) ;
  • Lee, Kyu-Back (Department of Biomedical Engineering, Korea University College of Medicine) ;
  • Kim, Jong-Won (Cardiovascular Research Center, Institute of Biomedlab Co.) ;
  • Kim, Mal-Nam (Department of Biology, Sangmyung University)
  • Published : 2001.04.01

Abstract

Staphylococal infection still remains to be one of the most serious infections, having various complications in the clinical use of indwelling polymeric medical devices. However, there are a few promising systems showing a high antibacterial effect without causing any demage of polymer backbone under biological environments such as blood or body fluid. In order to resolve this problem, we have designed a new antibiotic releasing system via a hydrolysis mechanism. The surface of biomedical polyurethane (PU) was modified by using 1,6-diisocyanatohexane (HMDI) to immobilize the rifampicon. Also, the immobilized rifampicin was designed to be released by a selective cleavage of the unstable carbamate linkage that exists on the rifampicin-immobilized polyurethane (PHR). The immobilization of rifampicin on the surface of polyurethane was confirmed by the disappearance of the characteristics IR absorbance peak of the isocyanate (-NCO) group at $2,267\;cm^{-1}$. The PHR showed a continuous rifampicin release profile under an aqueous environment of 10 mM of PBS (phosphate-buffered saline) for ove 6 days. The rifampicin molecules, which are released from PHR under an optimal bacterial infection environment, had a higher antibacterial activity against both S. aureus and S. epidermidis than rifampicin-incorporated polyurethane (RIP). In addition, the PHR maintained a stable antibacterial effect under a blood-mimic aqueous environment such as bovine calf serum.

Keywords

References

  1. J. Clin. Path v.36 Bacteriological examination of removed cerebrospinal fluid shunts Bayston, R.
  2. Polymeric Materials Encyclopedia v.9(P) Polyurethanes (overview) Bhatnager, M. S.
  3. Surg. Gynecol. Obstel. v.161 Central venous catheter sepsis Bozzetil, F.
  4. J. Biomed. Mater. Res. v.29 Bacterial/blood/material infections. Ⅰ. Injected and proceeded slime-forming Staphylococcus epidermidis in flowing blod with biomaterials Brunstedt, M. R.;S. Sapatnekar;K. R. Rubin
  5. Int. J. Artif. Organs v.16 Infections associated with implanted blood pumps Burns, G. L.
  6. J. Microbiol. Biotechnol. v.10 Expression of heat shock protein 70 in umbilical vein endothelial cells infected by Staphylococcus aureus Chang, H. A.;J. K. Chang;J. W. Kim;M. N. Kim
  7. CRC Crit. Rev. Biocompat. v.2 Biomedical polymers: Bacterial adhesion, colonization and infection Dankert, J.;A. H. Hogt;J. Feijen
  8. Trans. Soc. Biomater. v.16 Prevention of microbial colonization on medical devices by photochemical immobilization of antimicrobial peptides Duran, L. W.;J. A. Pietig;J. E. Driemeyer;M. J. Melchoir;S. M. Muller;S. P. Hu
  9. J. Biomed. Mater. Res. v.25 Prevention of bacterial colonization on polyurethane in vitro by incorporated antibacterial agent Golomb, G.;A. Shpigelman
  10. Microbes in Action(4th ed.) Harry, W. S.;J. V. Paul;J. L. John
  11. J. Microbiol. Biotechnol. v.8 Antistaphylococcal substance from Pseudomonas sp. KUH-001 Hwang, S. Y.;S. H. Lee;K. J. Song;Y. P. Kim;K. Kawahara
  12. J. Org. Chem. v.39 The question of amide group participation in carbamate hydrolysis Hegarty, A. F.;L. N. Frost;J. H. Coy
  13. J. Chem. Soc. Perkin Trans. v.2 Elimination-addition mechanism for the hydrolysis of carbamates; Trapping of an isocyanate intermediate by an o-amino-group Hegarty, A. F.;L. N. Frost
  14. Carbohydr. Res. v.117 A new method for covalent coupling of heparin and other glycosaminoglycans to substances containing primary amine groups Hoffman, J.;O. Larm;E. Scholander
  15. Biomaterials v.15 Surface modification of polymers for medical applications Ikada, Y.
  16. Circulation v.69 Prosthetic valve endocarditis Ivert, T. S. A.;W. E. Dismukes;C. G. Cobbs
  17. Zinsser Microbiology(20th ed.) Joklik, W. K.;H. P. Willett;D. B. Ames;C. M. Wilfert
  18. J. Inf. Dis. v.119 Bacteriologic studies of rifampicin, a new synthetic antibiotic Kunin, C. M.;D. W. Brandt
  19. J. Biomed. Mater. Res. v.20 Ex vivo interactions and surface property relationships of polyetherurethanes Lelah, M. D.;T. G. Grasel;J. A. Pierce;S. L. Cooper
  20. Polyurethanes in Medicine Lelah, M. D.;S. L. Cooper
  21. Lett. Appl. Microbiol. v.21 Application of a fluorescent redox dye for enumeration of metabolically active bacteria on titanium coated with cross-linked albumin Mcdowell, S.;Y. H. An;R. J. Friedman
  22. Am. Soc. Artif. Intern. Organs J. v.6 Thromboresistant alkyl derivatized polyurethanes Munro, M. S.;R. C. Eberhart;N. J. Maki;B. E. Brink;W. J. Fry
  23. Introduction to Sepectroscopy(2nd. ed.) Pavia, D. L.;G. M. Lampman;G. S. Kriz
  24. Indian Drugs v.22 Spectrophotometric determination of rifampicin pharmaceutical dosage forms Rao, G. R.;S. S. N. Murry;E. V. Rao
  25. Rev. Infect. Dis. v.5 Rifampicin: Spectrum of antibacterial activity Thornsberry, C.;B. C. Hill;J. M. Swenson;L. K. McDougal
  26. Pathogenesis of Wound and Biomaterial-associated Infections Wadstrom, T.;I. Eliasson;I. A. Holder;Å. Ljungh
  27. Rev. Infect. Dis. v.5 no.Sup.3 Rifampicin: Mechanisms of action and resistance Walter, W.
  28. J. Chem. Soc. Perkin Trans. v.2 Alkaline hydrolysis of substituted phenyl N-phenylcarbamates; Structure-reactivity relationships consistent with an E1cB mechanism Williams, A.
  29. J. Inf. Dis. v.146 Pathogenesis of foreign body infection; Description and characteristics of an animal model Zimmerli, W.;F. A. Walolvogel;D. Vandaux;U. E. Nydegger