NORM CONVERGENCE OF THE LIE-TROTTER-KATO PRODUCT FORMULA AND IMAGINARY-TIME PATH INTEGRAL

  • 발행 : 2001.03.01

초록

The unitary Lie-Trotter-Kato product formula gives in a simplest way a meaning to the Feynman path integral for the Schroding-er equation. In this note we want to survey some of recent results on the norm convergence of the selfadjoint Lie-Trotter Kato product formula for the Schrodinger operator -1/2Δ + V(x) and for the sum of two selfadjoint operators A and B. As one of the applications, a remark is mentioned about an approximation therewith to the fundamental solution for the imaginary-time Schrodinger equation.

키워드

참고문헌

  1. J.Funct.Anal v.145 An estimate on the Kac transfer operator B.O.Dia;M.Schatzman
  2. J.Math.Soc.Japan v.50 Error bound on exponential product formulas for Schrodinger operators A,Doumeki;T,Ichinose;H.Tamura
  3. Duke Math.J. v.47 Remarks on convergence of the Feynman path integrals D.Fujiwara
  4. Algebra i Analiz(St. Petersburg Math.J.) v.8 Around the transfer operator B.Helffer
  5. Operator Theory: Advances and Appl v.78 Around the transfer operator and the Trotter-Kato formula B.Helffier
  6. Math.topics v.11 Recent results and open problems on Schrodinger operators,Laplace integrals and transfer operators in large dimension,Schrodunger Operators Markov Semigroups,Wavlelt Analysis, Operator Algebras B.Helffier;M.Demuth(ed);E.Schrohe(ed);B.-W.Schulze(ed);J,Sjostrand(ed)
  7. Differential Equations and Mathematical Physics Proc.of the International Confernce,Univ. of Alabama at Birmingham Some results on the relativistic Hamiltonian: Selfadjointness and imaginary-time path integral T.Ichinose
  8. Proc. of Dubna Joint Meeting of International Seminar"Path Intergrals: Theory & Applications" and 5th Internatioal Conference"Path Integrals from meV to MeV" Norm convergence of the Trotter product formula for Schrodinger operators via the Feynman-Kac formula T.Ichinose
  9. Commun.Math.Phys v.186 Estimate of the difference between the Kac operator and the Schrodinger semigroup T,Ichinose;S,Takanobu
  10. Nagoya Math.J. v.149 The norm estimate of the difference between the Kac operator and the Schrodinger semigroup: A unified approach to the nonrelativistic and relativistic calklkkkkkkkkkkkkkse T.Ichinose;S.Takanobu
  11. Electro.J.Probab v.5 no.5 The norm estimate of the differnce between the Kac operator and the Schrodinger semigroup ∥: The general case including the relativistic case T.Ichinose;S.Takanobu
  12. Integr.Equat.Oper.Theory v.27 Error estimates in operator norm for Trotter-Kato product formula T,Ichinose;Hideo Tamura
  13. Asympt.Anal v.17 Error bound in trace norm for Trotter-Kato product formula of Gibbs semigroups T.Ichinose;Hideo Tamura
  14. Osaka J.Math v.35 Error estimates in operator norm of exponential product formulas for propagators of parabolic evolution equations T,Ichinose;Hideo Tamura
  15. Commun.Math.Phys v.105 Imaginary-time path integral for a relativisitic spinless particle in an electromagnetic field T.Ichinose;Hiroshi Tamura
  16. 1966 Brandeis Lecture, Gordon and Breach Mathematical mechanism of phase transitions M.Kac
  17. Proc.Natl.Acad.Sci.USA;ibid v.55;56 On the mathematical mechanism of phase transition ;Erratum M.Kac;C.J.Thompson
  18. Isreal J. Math v.13 Schrodinger opeators with singular potentials M.Kac;C.J.Thompson
  19. Lett.Math.Phys. v.44 On error estimates for the Trotter-Kato product formula H,Neidhardt;B.Sagrebnov
  20. Intergral Equations Operator Theory v.35 Fractional powers of selfadjoint operators and Trotter-Kato product formula H,Neidhardt;B.Sagrebnov
  21. Commun.Math.Phys v.205 Trotter-Kato product formula and operator-norm convergence H,Neidhardt;B.Sagrebnov
  22. J.Math.Phys v.5 Feynman integrals and the Schrodinger equation E,Nelson
  23. Revised and enlarged ed. Methods of Modern Mathematical Physics I: Functional Analysis M.Reed;B.Simon
  24. Funct.Anal.Appl v.27 Error bounds for Trotter-type formulas for self-adjoint operators D,L.Rogava
  25. Fuctional Integraltion and Quantum Physics B.Simon
  26. Ann.Probab v.25 On the error estimate of the integral kernel for the Trotter product formula for Schrodivger operators S,Takanobu
  27. Integral Equations Operator Theory v.37 A remark on operator-norm convergence of Trotter-Kato product formula Hiroshi Tamura
  28. Stud.Appl.Math v.48 Phase transition and eigenvalue degeneracy of a one dimensional anharmonic oscillator C.J.Thompson;M.Kac