IDENTICALLY DISTRIBUTED UNCORRELATED RANDOM VARIABLES NOT FULFILLING THE WLLN

  • Landers, Dieter (UNIVERSITY OF COLOGNE, MATHEMATISCHES INSTITUT) ;
  • Rogge, Lothar (UNIVERSITY OF DUISBURG, GERHARD-MERCATOR-UNIVERSITAT DUISBURG)
  • Published : 2001.08.01

Abstract

It is shown that for each 1 < p < 2 there exist identically distributed uncorrelated random variables $X_n\; with\;E({$\mid$X_1$\mid$}^p)\;<\;{\infty}$, not fulfilling the weak law of large numbers (WLLN). If, however, the random variables are moreover non-negative, the weaker integrability condition $E(X_1\;log\;X_1)\;<\;{\infty}$ already guarantees the strong law of large numbers.

Keywords

References

  1. Calcutta Stat. Ass. Bull. v.44 A note on the strong law of large numbers A. Bose;T. K. Chandra
  2. Z. Wahrsch. Verw. Geb. v.55 An elementary proof of the strong law of large numbers N. Etemadi
  3. Sankhy v.59 no.Sr.A Laws of large numbers for uncorrelated Cesaro uniformly integrable random variables D. Landers;L. Rogge
  4. Inaugural-Dissertation an der Universitat zu Koln Starke Gesetze der grossen Zahlen unter modifizierten Unabhangi-gkeitsbedingungen R. Schlomer
  5. Bull. Korean Math. Soc. v.34 On the strong law of large numbers for pairwise i.i.d random variables Soo Hak Sung