$C^\infty$ EXTENSIONS OF HOLOMORPHIC FUNCTIONS FROM SUBVARIETIES OF A CONVEX DOMAIN

  • Cho, Hong-Rae (DEPARTMENT OF MATHEMATICS EDUCATION, ANDONG NATIONAL UNIVERSITY)
  • Published : 2001.08.01

Abstract

$Let \Omega$ be a bounded convex domain in C^n$ with smooth boundary. Let M be a subvariety of $\Omega$ which intersects $\partial$$\Omega$ transversally. Suppose that $\Omega$ is totally convex at any point of $\partial$M in the complex tangential directions.For f $\epsilon$O(M)$\bigcap$/TEX>$C^{\infty}$($\overline{M}$/TEX>), there exists F $\epsilon$ o ($\Omega$))$\bigcap$/TEX>$C^{\infty}$($\overline{\Omega}$/TEX>) such that F(z) = f(z) for z $\epsilon$ M.

Keywords

References

  1. Pacific J. Math. v.110 no.1 Extending bounded holomorphic functions from certain subvarieties of a weakly pseudoconvex domain K. Adachi
  2. Pacific J. Math. v.130 no.1 Continuation of bounded holomorphic functions from certain subvarieties to weakly pseudoconvex domains K. Adachi
  3. Pacific J. Math. v.189 no.2 LP and HP extensions of holomorphic functions from subvarieties of analytic polyhedra K. Adachi;M. Andersson;H. R. Cho
  4. Complex Variables v.34 Lipschitz and BMO extensions of holomorphic functions from subvarieties to a convex domain K. Adachi;H. R. Cho
  5. Michigan Math. J. v.32 LP estimates for extensions of holomorphic functions F. Beatrous
  6. Math. Ann v.263 A formula for interpolation and division in Cn B. Berndtsson
  7. Ann. Inst. Fourier v.33 Extension dons des classes de hardy de fonctions holomorphes et estimation de type measures de Carleson pour l'equation A. Cumenge
  8. Ill. J. Math. v.24 Extensions to strictly pseudoconvex domains of functions holomorphic in a submanifold in general position and C¹ up to the boundary M. Elgueta
  9. J. Funct. Anal. v.70 An explicit extension formula of bounded holomorphic functions from analytic varieties to strictly convex domains T. E. Hatziafratis
  10. Izv. Akad. Nauk SSSR v.36 Continuation of bounded holomorphic functions from submanifolds in general position G. M. Henkin
  11. Math. USSR Izvestija v.6 English translation G. M. Henkin
  12. Ann. Polon. Math. v.42 On the regularity of extension to strictly pseudoconvex domains of functions holomorphic in a submanifold in general position P. Jakobczak
  13. C. R. Acad. Sci. v.321 Extension des fonctions holomorphes E. Mazzilli
  14. Pacific J. Math. v.78 The Caratheodory metric and holomorphic maps on a class of weakly pseudoconvex domains R. M. Range