A GENERALIZATION OF STRONGLY CLOSE0TO-CONVEX FUNCTIONS

  • Published : 2001.08.01

Abstract

The purpose of this paper is to study several geometric properties for the new class $G_{\kappa}(\beta)$ including geometric interpretation, coefficient estimates, radius of convexity, distortion property and covering theorem.

Keywords

References

  1. Duke Math. J. v.19 A Survey of the development of the theory of schlicht functions S. D. Bernardi
  2. Proc. Edin Math. Soc. v.2 On functions of Bounded Boundary Rotation D. A. Brannan
  3. Trans. of Math. Mono. v.26 Geometric theory of functions of a complex variable G. M. Golusin
  4. Michigan Math. J. v.1 close-to-convex schlicht functions W. Kaplan
  5. Tran. of the Amer. Math. Soc. v.174 A generalization of univalent functions with Bounded Boundary Rotation E. J. Moulis;JR.
  6. Internat. J. Math. v.6 no.2 On a generalization of close-to-convexity K. I. Noor
  7. Annal/Acad. Sci. Fenn. Ser. v.A37 no.9 Uber Gebiete von beschrankter Randdrehung V. Paatero
  8. Journal D'Analyse Math v.30 Functions of Bounded Boundary Rotation and convexity A. Pfluger
  9. Trans. Amer. Math. Soc. v.114 On close-to-convex analytic functions Ch. Pommerenke
  10. Proc. London Math. Soc. v.3 On starlike and close-to-convex functions Ch. Pommerenke
  11. Proc. Amer. Math. Soc. v.36 no.2 On a class of close-to-convex functions H. Silverman