A GENERALIZATION OF STRONGLY CLOSE-TO-CONVEX FUNCTIONS

YOUNG OK PARK AND SUK YOUNG LEE

ABSTRACT. The purpose of this paper is to study several geometric properties for the new class $G_k(\beta)$ including geometric interpretation, coefficient estimates, radius of convexity, distortion property and covering theorem.

1. Introduction

Let $C_{\alpha}(0 \leq \alpha \leq 1)$ be the class of all functions

$$(1.1) f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

analytic in $E = \{z : |z| < 1\}$ that satisfy $f'(z) \neq 0$ and

$$\int_{\theta_1}^{\theta_2} \frac{\partial}{\partial \theta} \arg[e^{i\theta} f'(re^{i\theta})] d\theta \ge -\alpha \pi$$

for all $\theta_1 < \theta_2$ and $0 \le r < 1$. The class C_1 is the class of close-to-convex functions introduced by Kaplan [4], and the class C_{α} are subclass of C_1 . The class C_0 consists of all convex functions.

Ch. Pommerenke [9] showed that a function f(z) of the form (1.1) belongs to C_{α} if and only if there exists a function h(z) starlike in E with h(0) = 0, h'(0) = 1 such that

(1.2)
$$\left|\arg\frac{zf'(z)}{h(z)}\right| \le \frac{\pi}{2}\alpha, \quad (z \in E).$$

Received April 18, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 30C45.

Key words and phrases: strongly close-to-convex function, bounded boundary rotation.

Let $V_k(2 \le k \le 4)$ be the class of all functions f(z) represented by (1.1) in E and satisfy $f'(z) \ne 0$ in E and

$$\limsup_{r \to 1} \int_0^{2\pi} \left| Re \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} \right| d\theta \le k\pi \quad (z = re^{i\theta}, r < 1).$$

 V_k is the class of functions with boundary rotation at most $k\pi$. Every function $f \in V_k$ can be given by the Stieltjes integral representation

(1.3)
$$1 + \frac{zf''(z)}{f'(z)} = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 + e^{i\theta}z}{1 - e^{i\theta}z} d\psi(\theta),$$

where $\int_0^{2\pi} d\psi(\theta) = 2\pi$, $\int_0^{2\pi} |d\psi(\theta)| \le k\pi$ and $\psi(\theta)$ is a function of bounded variation on $[0, 2\pi]$.

We shall generalize the definition (1.2) of Pommerenke's class of strongly close-to-convex functions by using a function g(z) in the class V_k of bounded boundary rotation for $2 \le k \le 4$. We shall denote this new class of functions by $G_k(\beta)$.

DEFINITION. Let f(z) be a holomorphic function in E with normalizations f(0) = 0, f'(0) = 1. f(z) belongs to the class $G_k(\beta)$ if $f'(z) \neq 0$ in E and satisfies the condition

$$|\arg \frac{f'(z)}{g'(z)}| \le \frac{\beta\pi}{2}, \quad (0 \le \beta \le 1, z \in E)$$

for some g(z) in V_k $(2 \le k \le 4)$.

Note that if k = 2, $G_k(\beta)$ reduces to the class of strongly close-to-convex functions of order β which was studied by Ch. Pommerenke [9]. If k = 2, $\beta = 0$, $G_k(\beta)$ reduces to the class of convex functions. If k = 2, k = 3, k = 4, then k = 3, then k = 4, then k = 4 then k = 4.

In this note, we reduce several geometric properties for the new class $G_k(\beta)$ including geometric interpretation, radius of convexity, distortion property, covering theorem and coefficient estimates.

2. Properties for the class $G_k(\beta)$

THEOREM 2.1. For the class of functions $G_k(\beta)$, $0 \le \beta \le 1$, $2 \le k \le 4$, the inequality

(2.1)
$$\int_{\theta_2}^{\theta_2} Re \Big(1 + re^{i\theta} \frac{f''(re^{i\theta})}{f'(re^{i\theta})} \Big) d\theta > \frac{-k\beta}{2} \pi,$$

holds for all $\theta_1 < \theta_2$ and for all $0 \le r < 1$.

Proof. Suppose $f \in G_k(\beta)$, and let g be an associated bounded boundary rotation function. Then for a suitable choice of arguments,

$$|\arg f'(z) - \arg g'(z)| < \frac{\beta\pi}{2} \le \frac{k\beta}{4}\pi, \quad 0 \le \beta \le 1.$$

Let

$$F(r,\theta) = \arg\{\frac{\partial}{\partial \theta}f(re^{i\theta})\} = \arg f'(re^{i\theta}) + \frac{\pi}{2} + \theta$$

and

$$G(r, \theta) = \arg\{\frac{\partial}{\partial \theta}g(re^{i\theta})\} = \arg g'(re^{i\theta}) + \frac{\pi}{2} + \theta.$$

Since g is a bounded boundary rotation function, $G(r, \theta)$ is an increasing function of θ . The definition of $G_k(\beta)$ gives us that

$$|F(r,\theta) - G(r,\theta)| \le \frac{k\beta}{4}\pi, \quad 0 \le \beta \le 1.$$

Thus for $\theta_1 < \theta_2$,

$$F(r,\theta_{2}) - F(r,\theta_{1})$$

$$= [F(r,\theta_{2}) - G(r,\theta_{2})] + [G(r,\theta_{2}) - G(r,\theta_{1})] + [G(r,\theta_{1}) - F(r,\theta_{1})]$$

$$> -\frac{k\beta}{4}\pi + 0 - \frac{k\beta}{4}\pi$$

$$= -\frac{k\beta}{2}\pi,$$

which is equivalent to the condition (2.1).

REMARK. From Theorem 2.1, we can interpret some geometric meaning for the class $G_k(\beta)$. If we suppose that the image domain is bounded by an analytic curve C, the outward drawn normal at a point on C has an angle $\arg[e^{i\theta}f'(e^{i\theta})]$. Then from (2.1), it follows that the angle of the outward drawn normal turns back at most $\frac{k\beta}{2}\pi$. This is a necessary condition for a function f to belong to $G_k(\beta)$. It will be interesting to see if this condition is also sufficient.

LEMMA 1 ([2]). Let $g \in V_k$ ($2 \le k \le 4$). Then there are two starlike functions s_1 and s_2 such that for $z \in E$

$$g'(z) = \frac{\left(\frac{s_1(z)}{z}\right)^{\frac{k}{4} + \frac{1}{2}}}{\left(\frac{s_2(z)}{z}\right)^{\frac{k}{4} - \frac{1}{2}}}.$$

THEOREM 2.2. Let $C(\beta)$ denote the class of close-to-convex functions of order β . Then $f \in G_k(\beta)$, $0 \le \beta \le 1$, $2 \le k \le 4$ if and only if

$$f'(z) = rac{m_1'(z)^{rac{k}{4}+rac{1}{2}}}{m_2'(z)^{rac{k}{4}-rac{1}{2}}}, \quad m_1(z), m_2(z) \in C(eta).$$

Proof. From definition of $G_k(\beta)$, we have

$$f'(z)=g'(z)h^{eta}(z),\quad g\in V_k ext{ and } |\arg h(z)|<rac{1}{2}\pi.$$

Using Lemma 1, we know that there are two starlike functions s_1 and s_2 such that for $z \in E$,

$$g'(z) = \frac{\left(\frac{s_1(z)}{z}\right)^{\frac{k}{4} + \frac{1}{2}}}{\left(\frac{s_2(z)}{z}\right)^{\frac{k}{4} - \frac{1}{2}}}.$$

Thus

$$f'(z) = \frac{\left(\frac{s_1(z)}{z}\right)^{\frac{k}{4} + \frac{1}{2}}}{\left(\frac{s_2(z)}{z}\right)^{\frac{k}{4} - \frac{1}{2}}} h^{\beta}(z) = \frac{\left(\frac{s_1(z)h^{\beta}(z)}{z}\right)^{\frac{k}{4} + \frac{1}{2}}}{\left(\frac{s_2(z)h^{\beta}(z)}{z}\right)^{\frac{k}{4} - \frac{1}{2}}} = \frac{(m_1'(z))^{\frac{k}{4} + \frac{1}{2}}}{(m_2'(z))^{\frac{k}{4} - \frac{1}{2}}},$$

where m_1 and m_2 are two suitable selected close-to-convex functions of order β .

THEOREM 2.3. Let $f \in G_k(\beta)$. Then the radius r_0 of convexity for the function f is given by

$$r_0 = \frac{1}{2}[(k+2\beta) - \sqrt{k^2 + 4\beta(k+\beta) - 4}], \quad 2 \le k \le 4.$$

Proof. By definition of $G_k(\beta)$

$$zf'(z) = zg'(z)h^{\beta}(z), \quad g \in V_k, |arg h(z)| < \frac{\pi}{2}.$$

Thus

$$\frac{(zf'(z))'}{f'(z)} = \frac{(zg'(z))'}{g'(z)} + \frac{zh'(z)}{h(z)}$$

and so

$$Re\frac{(zf'(z))'}{f'(z)} \ge Re\frac{(zg'(z))'}{g'(z)} - \Big|\frac{zh'(z)}{h(z)}\Big|.$$

For $g \in V_k$, it is well-known that, for $z = re^{i\theta}$, $0 \le r < 1$,

$$Re\frac{(zg'(z))'}{g'(z)} \ge \frac{r^2 - kr + 1}{1 - r^2}.$$

Hence

$$Re\frac{(zf'(z))'}{f'(z)} \ge \frac{r^2 - kr + 1}{1 - r^2} - \beta \frac{2r}{1 - r^2} = \frac{r^2 - (k + 2\beta)r + 1}{1 - r^2}.$$

Therefore the radius of convexity $r_0 = \frac{1}{2}[(k+2\beta) - \sqrt{k^2 + 4\beta(k+\beta) - 4}].\Box$

LEMMA 2 ([11]). Let Q(z) be analytic for $z \in E$ with Q(0) = 1. Then $Re \ Q(z) \ge \gamma$ if and only if

$$Q(z) = \frac{1 + (1 - 2\gamma)g(z)}{1 - g(z)},$$

where g(z) is analytic, g(0) = 0 and |g(z)| < 1 for $z \in E$.

THEOREM 2.4. Let $f(z) \in G_k(\beta)$, $0 \le \beta \le 1$, then

$$(1) |f'(z)| \leq \frac{(1+r)^{\frac{k}{2}-1}}{(1-r)^{\frac{k}{2}+1}} (\frac{1+r}{1-r})^{\beta}.$$

$$(2) |f'(z)| \ge \frac{(1-r)^{\frac{k}{2}-1}}{(1+r)^{\frac{k}{2}+1}} (\frac{1-r}{1+r})^{\beta}.$$

Equality holds in (1) for the function

$$f_1(z) = \int_0^z \frac{(1+t)^{\frac{k}{2}-1}}{(1-t)^{\frac{k}{2}+1}} \left(\frac{1+t}{1-t}\right)^{\beta} dt$$

and equality holds in (2) for the function

$$f_2(z) = \int_0^z \frac{(1-t)^{rac{k}{2}-1}}{(1+t)^{rac{k}{2}+1}} \Big(rac{1-t}{1+t}\Big)^{eta} dt.$$

Proof. Let $\frac{f'(z)}{\phi'(z)} = Q^{\beta}(z)$, where $Re\ Q(z) \ge 0,\ 0 \le \beta \le 1,\ \phi(z) \in V_k$. Then from the Lemma 2

(2.2)
$$\frac{f'(z)}{\phi'(z)} = \left[\frac{1+g(z)}{1-g(z)}\right]^{\beta},$$

where g(0) = 0 and |g(z)| < 1 for $z \in E$. Since g(z) satisfies the conditions of Schwarz's lemma, (2.2) yields

$$\left[\frac{1-r}{1+r}\right]^{\beta} \le \left|\frac{f'(z)}{\phi'(z)}\right| \le \left[\frac{1+r}{1-r}\right]^{\beta}.$$

In [8] it was shown that

(2.4)
$$\frac{(1-r)^{\frac{k}{2}-1}}{(1+r)^{\frac{k}{2}+1}} \le |\phi'(r)| \le \frac{(1+r)^{\frac{k}{2}-1}}{(1-r)^{\frac{k}{2}+1}}.$$

Combining (2.3) and (2.4)

$$\frac{(1-r)^{\frac{k}{2}-1}}{(1+r)^{\frac{k}{2}+1}} \left(\frac{1-r}{1+r}\right)^{\beta} \leq |f'(z)| \leq \frac{(1+r)^{\frac{k}{2}-1}}{(1-r)^{\frac{k}{2}+1}} \left(\frac{1+r}{1-r}\right)^{\beta}.$$

To prove that $f_1(z) \in G_k(\beta)$ and $f_2(z) \in G_k(\beta)$, let

$$f_1(z) = \int_0^z rac{(1+t)^{rac{k}{2}-1}}{(1-t)^{rac{k}{2}+1}} \Big(rac{1+t}{1-t}\Big)^{eta} dt,$$

$$f_2(z) = \int_0^z \frac{(1-t)^{\frac{k}{2}-1}}{(1+t)^{\frac{k}{2}+1}} (\frac{1-t}{1+t})^{\beta} dt$$

and

$$\phi_1(z) = \int_0^z \frac{(1+t)^{\frac{k}{2}-1}}{(1-t)^{\frac{k}{2}+1}} dt, \quad \phi_2(z) = \int_0^z \frac{(1-t)^{\frac{k}{2}-1}}{(1+t)^{\frac{k}{2}+1}} dt.$$

Since $\frac{f_1'(z)}{\phi_1'(z)} = (\frac{1+z}{1-z})^{\beta}$, $\frac{f_2'(z)}{\phi_2'(z)} = (\frac{1-z}{1+z})^{\beta}$ have argument which is less than $\frac{\beta\pi}{2}$, it suffices to show that $\phi_1(z), \phi_2(z) \in V_k$. However, it was already shown in [8] that $\phi_1(z), \phi_2(z)$ belongs to V_k .

THEOREM 2.5. Let $f(z) \in G_k(\beta), 0 \le \beta \le 1$, then

$$\int_0^r \frac{(1-t)^{\frac{k}{2}-1}}{(1+t)^{\frac{k}{2}+1}} (\frac{1-t}{1+t})^{\beta} dt \le |f(z)| \le \int_0^r \frac{(1+t)^{\frac{k}{2}-1}}{(1-t)^{\frac{k}{2}+1}} (\frac{1+t}{1-t})^{\beta} dt.$$

Equality holds on the right-hand side for

$$f_1(z) = \int_0^z \frac{(1+t)^{\frac{k}{2}-1}}{(1-t)^{\frac{k}{2}+1}} (\frac{1+t}{1-t})^{\beta} dt$$

and on the left-hand side for

$$f_2(z) = \int_0^z \frac{(1-t)^{\frac{k}{2}-1}}{(1+t)^{\frac{k}{2}+1}} (\frac{1-t}{1+t})^{\beta} dt.$$

Proof. Integrating along the straight line segment from the origin to $z=re^{i\theta}$ and applying Theorem 2.4, we obtain

$$|f(z)| \leq \int_0^r |f'(te^{i\theta})| dt \leq \int_0^r \frac{(1+t)^{\frac{k}{2}-1}}{(1-t)^{\frac{k}{2}+1}} \Big(\frac{1+t}{1-t}\Big)^{\beta} dt,$$

which proves the right-hand inequality. To prove the left-hand inequality, for every r we choose $z_0, |z_0| = r$, such that

$$|f(z_0)| = \min_{|z|=r} |f(z)|.$$

If $L(z_0)$ is the preimage of the segment $\{0, f(z_0)\}$, then

$$|f(z)| \ge |f(z_0)| \ge \int_{L(z_0)} |f'(z)| d|z| \ge \int_0^r \frac{(1-t)^{\frac{k}{2}-1}}{(1+t)^{\frac{k}{2}+1}} \left(\frac{1-t}{1+t}\right)^{\beta} dt.$$

THEOREM 2.6. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be in $G_k(\beta)$ for $2 \le k \le$

4, $0 \le \beta \le 1$. Then the coefficients satisfy the inequalities

$$|a_{2}| \leq \frac{k}{2} + \beta$$

$$(2.5) \qquad |a_{3}| \leq \frac{k^{2}}{4} + \left(\frac{2\beta + 1}{3}\right)k + \left(\frac{2\beta^{2} - 1}{3}\right)$$

$$|a_{4}| \leq \frac{k^{3}}{24} + \frac{3\beta}{8}k^{2} + \left(\frac{\beta^{2}}{3} + \frac{\beta}{2} + \frac{1}{2}\right)k + \left(\frac{\beta^{2}}{3} + \frac{\beta}{2} - \frac{1}{2}\right).$$

Proof. Since f(z) is in $G_k(\beta)$, there exists a function $\phi(z) \in V_k, 2 \le k \le 4$, satisfying $|\arg \frac{f'(z)}{\phi'(z)}| < \frac{\beta\pi}{2}$. We may assume that f(z) and $\phi(z)$

are
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 and $\phi(z) = z + \sum_{n=2}^{\infty} c_n z^n$. If we write

$$(2.6) \qquad \frac{f'(z)}{\phi'(z)} = [g(z)]^{\beta} = \left[1 + \sum_{n=1}^{\infty} b_n z^n\right]^{\beta}, \quad |\arg g(z)| < \frac{\pi}{2},$$

then we obtain the following relations among the coefficients

$$2a_{2} = 2c_{2} + \beta b_{1}$$

$$6a_{3} = 6c_{3} + 4\beta b_{1}c_{2} + \beta(\beta - 1)b_{1}^{2} + 2\beta b_{2}$$

$$24a_{4} = 24c_{4} + 18\beta b_{1}c_{3} + 4\beta(\beta - 1)b_{1}^{2}c_{2} + 8\beta b_{2}c_{2}$$

$$+ 2(\beta - 1)b_{1}^{2}b_{2} + (\beta - 1)(\beta - 2)b_{1}^{3}$$

$$+ 6(\beta - 1)b_{1}b_{2} + 4b_{2}c_{2} + 6b_{3}.$$

For the function (2.6), we have the well-known bounds [1]

$$(2.8) |b_n| \le 2 (n = 1, 2, 3, \cdots)$$

and for the function $\phi(z) \in V_k, 2 \le k \le 4$, we have the inequalities [5]

$$|c_{2}| \leq \frac{k}{2}$$

$$|c_{3}| \leq \frac{k^{2}}{4} + \frac{k-1}{3}$$

$$|c_{4}| \leq \frac{k^{3} + 8k}{24}.$$

From (2.7), (2.8), and (2.9), we obtain the results.

THEOREM 2.7. Let $f(z) \in G_k(\beta)$ with $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ for $0 \le \beta \le 1, \ 2 \le k \le 4$. If $f(z) \ne c$ for $z \in E$, then

$$|c| \ge \frac{2}{4 + 2\beta + k}.$$

Proof. If f(z) does not assume the value c, then

$$\frac{cf(z)}{c - f(z)} = z + \left(a_2 + \frac{1}{c}\right)z^2 + \sum_{n=3}^{\infty} b_n z^n$$

is in the class S of normalized univalent functions in E. Hence,

$$\left|a_2 + \frac{1}{c}\right| \le 2.$$

Applying the triangle inequality and the coefficient estimates for $G_k(\beta)$ to (2.10), we obtain

$$\begin{split} \left|\frac{1}{c}\right| - |a_2| &\leq 2, \\ \left|\frac{1}{c}\right| &\leq 2 + |a_2| \leq 2 + \beta + \frac{k}{2} = \frac{4 + 2\beta + k}{2}, \\ |c| &\geq \frac{2}{4 + 2\beta + k}. \end{split}$$

LEMMA 3. Let H be analytic and be defined as

$$H(z)g'(z) = (zg'(z))', \quad g \in V_k$$

and

$$\begin{split} H(z) &= \Big(\frac{k}{4} + \frac{1}{2}\Big)h_1(z) - \Big(\frac{k}{4} - \frac{1}{2}\Big)h_2(z), \\ |\arg h_1(z)| &< \frac{\pi}{2}, \quad |\arg h_2(z)| < \frac{\pi}{2}, \quad h_1(0) = h_2(0) = 1. \end{split}$$

Then

$$\frac{1}{2\pi} \int_0^{2\pi} |H(z)|^2 d\theta \le \frac{1 + (k^2 - 1)r^2}{1 - r^2}, \quad z = re^{i\theta}.$$

Proof. From the representation formula by Paatero [7], we can write

$$H(z) = rac{1}{2\pi} \int_0^{2\pi} rac{1 + ze^{it}}{1 - ze^{it}} d\mu(t),$$

where $\int_0^{2\pi} d\mu(t) = 2\pi$ and $\int_0^{2\pi} |d\mu(t)| \le k\pi$. Let $H(z) = 1 + \sum_{n=1}^{\infty} c_n z^n$. Then

$$c_n = \frac{1}{\pi} \int_0^{2\pi} e^{-int} d\mu(t)$$
 and $|c_n| \le \frac{1}{\pi} \int_0^{2\pi} |d\mu(t)| \le k$.

Therefore

$$\frac{1}{2\pi} \int_0^{2\pi} |H(z)|^2 d\theta = 1 + \sum_{n=1}^{\infty} |c_n|^2 r^{2n} \le 1 + k^2 \sum_{n=1}^{\infty} r^{2n}$$
$$= \frac{1 + (k^2 - 1)r^2}{1 - r^2}.$$

THEOREM 2.8. Let $f(z)=z+\sum_{n=2}^{\infty}a_nz^n\in G_k(\beta)$. Then for $n\geq 1$, $||a_{n+1}|-|a_n||\leq c(k,\beta)n^{\frac{k}{2}-1}$, where $c(k,\beta)$ is a constant and depends on k and β .

Proof. Since $f \in G_k(\beta)$, we can write for $z \in E$,

$$f'(z) = g'(z)h^{\beta}(z), \quad g \in V_k \quad \text{and} \quad |\arg h(z)| < \frac{\pi}{2}.$$

Let

$$(2.11) F(z) = z(zf'(z))' = zg'(z)[H(z)h(z) + \beta zh'(z)]h^{\beta-1}(z),$$

where $|\arg h(z)| < \frac{\pi}{2}$ and H(z)g'(z) = (zg'(z))', with $H(z) = (\frac{k}{4} + \frac{1}{2})h_1(z) - (\frac{k}{4} - \frac{1}{2})h_2(z)$,

$$|\arg |h_1(z)| < \frac{\pi}{2}, |\arg |h_2(z)| < \frac{\pi}{2}, |h_1(0)| = h_2(0) = 1.$$

Thus, we have for $\xi \in E$ and $n \ge 1$,

$$|(n+1)^2 \xi a_{n+1} - n^2 a_n| \le \frac{1}{2\pi r^{n+1}} \int_0^{2\pi} |z - \xi| |F(z)| d\theta,$$

and by using Lemma 1 and (2.11),

$$|(n+1)^{2}\xi a_{n+1} - n^{2}a_{n}|$$

$$\leq \frac{1}{2\pi r^{n+1}} \int_{0}^{2\pi} |z - \xi| \frac{|s_{1}(z)|^{\frac{1}{4}k + \frac{1}{2}}}{|s_{2}(z)|^{\frac{1}{4}k - \frac{1}{2}}} |[H(z)h(z) + \beta zh'(z)]h^{\beta - 1}(z)|d\theta,$$

where s_1 , s_2 are starlike functions. We know that for starlike function $s \in S^*$,

(2.13)
$$\frac{r}{(1+r)^2} \le |s(z)| \le \frac{r}{(1-r)^2}.$$

Let 0 < r < 1. Then by a result of Goluzin [3], there exists a z_1 with $|z_1| = r$ such that for all z, |z| = r,

$$(2.14) |z-z_1||s(z)| \le \frac{2r^2}{1-r^2}.$$

From (2.12), (2.13), and (2.14), we have

$$|(n+1)^{2}\xi a_{n+1} - n^{2}a_{n}|$$

$$\leq \frac{1}{2\pi r^{n+1}} \left(\frac{4}{r}\right)^{\frac{1}{4}k - \frac{1}{2}} \left(\frac{2r^{2}}{1 - r^{2}}\right) \left(\frac{r}{(1 - r)^{2}}\right)^{\frac{1}{4}k - \frac{1}{2}}$$

$$\times \int_{0}^{2\pi} |[H(z)h(z) + \beta z h'(z)]h^{\beta - 1}(z)|d\theta.$$

Now as in [10], we have with $z = re^{i\theta}$,

$$(2.16) \quad \frac{1}{2\pi} \int_0^{2\pi} |h(z)|^2 d\theta \le \frac{1+3r^2}{1-r^2} \quad \text{and}$$

$$\frac{1}{2\pi} \int_0^{2\pi} |zh'(z)| d\theta \le \frac{2r}{1-r^2}, \text{ where } |\arg h(z)| < \frac{\pi}{2}.$$

Also, by using Schwarz's inequality, Lemma 3 and (2.16),

$$\frac{1}{2\pi} \int_{0}^{2\pi} |[H(z)h(z) + \beta z h'(z)]h^{\beta-1}(z)|d\theta$$

$$(2.17) \qquad \leq \frac{1}{2\pi} \int_{0}^{2\pi} |H(z)h^{\beta}(z)|d\theta + \frac{1}{2\pi} \int_{0}^{2\pi} \beta |zh'(z)h^{\beta-1}(z)|d\theta$$

$$\leq \left(\frac{1 + (k^{2} - 1)r^{2}}{1 - r^{2}}\right)^{\frac{1}{2}} \left(\frac{1 + 3r^{2}}{1 - r^{2}}\right)^{\frac{\beta}{2}} + \beta \frac{2r}{1 - r^{2}} \left(\frac{1 + 3r^{2}}{1 - r^{2}}\right)^{\frac{\beta-1}{2}}.$$

Hence from (2.15) and (2.17),

$$\begin{split} &|(n+1)^2\xi a_{n+1}-n^2a_n|\\ &\leq \frac{1}{r^{n+1}}2^{\frac{1}{2}k}[(1+(k^2-1)r^2)^{\frac{1}{2}}+r\beta]\frac{1}{(1-r)^{\frac{1}{2}k+1}}\Big(\frac{1+3r^2}{1-r^2}\Big)^{\frac{\beta-1}{2}}, \end{split}$$

and choosing $|\xi| = r = (\frac{n}{n+1})^2$, we obtain for $n \ge 1$,

$$n^{2}||a_{n+1}| - |a_{n}||$$

$$\leq (k+\beta)e^{2}2^{\frac{1}{2}k+2} \left(\frac{4}{3}\right)^{\frac{1}{2}k+1} \left(\frac{19}{15}\right)^{\frac{\beta-1}{2}} n^{\frac{1}{2}k+1}.$$

Thus $||a_{n+1}| - |a_n|| \le c(k, \beta) n^{\frac{1}{2}k - 1}$.

References

- [1] S. D. Bernardi, A Survey of the development of the theory of schlicht functions, Duke Math. J. 19 (1952), 263-287.
- [2] D. A. Brannan, On functions of Bounded Boundary Rotation, Proc. Edin Math. Soc. 2 (1968-69), 330-347.
- [3] G. M. Golusin, Geometric theory of functions of a complex variable, Trans. of Math. Mono., American Math. Soc. 26 (1969).
- [4] W. Kaplan, close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185.
- [5] E. J. Moulis, JR., A generalization of univalent functions with Bounded Boundary Rotation, Tran. of the Amer. Math. Soc. 174 (1972), 369–381.
- [6] K. I. Noor, On a generalization of close-to-convexity, Internat. J. Math., Math. Sci. 6 (1983), no. 2, 327-334.
- [7] V. Paatero, *Uber Gebiete von beschrankter Randdrehung*, Annal/Acad. Sci. Fenn. Ser. A 37 (1933), no. 9, p. 20.
- [8] A. Pfluger, Functions of Bounded Boundary Rotation and convexity, Journal D'Analyse Math. 30 (1976), 437-451.

- [9] Ch. Pommerenke, On close-to-convex analytic functions, Trans. Amer. Math. Soc. 114 (1965), 176–186.
- [10] _____, On starlike and close-to-convex functions, Proc. London Math. Soc. 3 (1963), 290-304.
- [11] H. Silverman, On a class of close-to-convex functions, Proc. Amer. Math. Soc. 36 (1972), no. 2, 477-484.

DEPARTMENT OF MATHEMATICS, EWHA WOMEN'S UNIVERSITY, SEOUL 120-750, KOREA

E-mail: yopark2274@hanmail.net mathdept@mm.ewha.ac.kr