Development of TVD Numerical Models: I. Linear Advection Equation

TVD 수치모형의 개발: I. 선형 이송방정식

  • Lee, Jong-Uk (Dept. of Civil Engineering, Engineering Collage, Hanyang University) ;
  • Jo, Yong-Sik (Dept. of Civil Engineering, Engineering Collage, Hanyang University) ;
  • Yun, Gwang-Seok (Korea Institute of Construction Technology) ;
  • Yu, Tae-Hun (Dept. of Civil Engineering, Engineering Collage, Hanyang University)
  • 이종욱 (한양대학교 공과대학 토목공학과) ;
  • 조용식 (한양대학교 공과대학 토목공학과) ;
  • 윤광석 (한국건설기술연구원) ;
  • 유태훈 (한양대학교 공과대학 토목공학과)
  • Published : 2001.04.01

Abstract

By using he total variation diminishing (TVD) condition, accurate and upwind based schemes are firstly introduced to develop numerical models free from nonphysical oscillations in the vicinity of large gradients. These models are then applied to both abruptly and smoothly varying initial conditions. By comparing computed predictions to analytical solutions, it is clearly shown that the first-order upwind scheme produces the numerical viscosity and the second-order Lax-Wendroff scheme produces the spurious oscillations. However, the TVD scheme gives the most reasonable results.

2차 이상의 정확도를 가지며 불연속면에서 수치진동이 발생하지 않는 수치모형의 개발을 위해 풍상차분기법에 기초한 TVD기법이 소개되었다. 이 수치모형을 불연속면 이 존재하는 경우와 존재하지 않는 경우에 대해 적용하였으며, 이 결과 1차 정확도의 풍상차분기법은 시간이 지나면서 수치점성의 영향이 커졌으며 2차 정확도의 Lax-Wendroff기법의 경우에는 불연속면에서 진동이 발생하였다. 그러나 TVD기법은 모든 경우에서 만족스러운 결과를 예측하였다.

Keywords

References

  1. 김원(1999). 고정확도 수치기법을 이용한 하천 천이류 해석모형의 개발. 박사학위논문, 경북대학교
  2. 오성택, 황승용, 이길성(1998). '흐름률 분리방법에 의한 도수의 수치해석.' 대한토목학회논문집, 제18권, 제II-3호, pp. 215-221
  3. 윤태훈, 이종욱(1999). '불연속흐름의 2차원 수치해석.' 대한토목학회논문집, 제19권, 제II-4호, pp. 445-454
  4. Billett, S.J. and Toro, E.F. (1997). 'WAF-type schemes for multidimensional hyperbolic conservation laws.' Journal of Computational Physics, Vol. 130, pp. 1-24 https://doi.org/10.1006/jcph.1996.5470
  5. Courant, R., Isaacson, E., and Reeves, M. (1952). 'On the solution of nonlinear hyperbolic differential equations by finite differences.' Communication on Pure and Applied Mathematics, Vol. 5, pp. 243-255 https://doi.org/10.1002/cpa.3160050303
  6. Fraccarollo, L and Taro, E.F. (1995). 'Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems.' Journal of Hydraulic Research, Vol. 33, pp. 843 -864
  7. Garcia-Navarro, P. and Priestley, A. (1993). 'The application of and implicit TVD method for water flow modelling in channels and pipes.' Numerical Analysis Internal Report 6, Department of Mathematics, University of Reading
  8. Garcia-Navarro, P. and Saviron, J.M. (1992). 'MacCormack's method for the numerical simulation of one-dimensional discontinuous unsteady open channel flow.' Journal of Hydraulic Research, Vol. 30, pp. 95-105
  9. Harten, A. (1983). 'High resolution schemes for hyperbolic conservation laws.' Journal of Computational Physics, Vol. 49, pp. 357-393 https://doi.org/10.1016/0021-9991(83)90136-5
  10. Hirsch, C. (1990). Numerical computation of internal and external flow-Volume 2: computational methods for inviscid and viscous flows. John Wiley & Sons Ltd
  11. Hoffmann, K.A. and Chiang, S.T. (1993). Computational fluid dynamics for engineers. Engineering Education System
  12. Jha, A.K., Akiyama, J., and Ura, M. (1995). 'First and second-order flux difference splitting schemes.' Journal of Hydraulic Engineering, ASCE, Vol. 121, pp. 877-884 https://doi.org/10.1061/(ASCE)0733-9429(1995)121:12(877)
  13. Nakatani, T. and Komura, S. (1993). 'A numerical simulation of flow with hydraulic jump using TVD-MacCormack scheme.' Proceeding of XXV Congress of IAHR, Vol. 1, pp. 9-13
  14. Osher, S. (1984). 'Riemann solvers, the entropy condition and difference approximations.' SIAM Journal on Numerical Analysis, Vol. 21, pp. 217-235 https://doi.org/10.1137/0721016
  15. Roe, P.L. (1981a). 'Approximate Riemann solvers, parameter vectors and difference schemes.' Journal of Computational Physics, Vol. 43, pp. 357-372 https://doi.org/10.1016/0021-9991(81)90128-5
  16. Roe, P.L. (1981b). Numerical algorithms for the linear wave equation. Technical Report 81047, Royal Aircraft Establishment, UK
  17. Steger, J.L. and Warming, R.F. (1981) 'Flux vector splitting of inviscid gas-dynamic equations with application to finite difference methods' Journal of Computational Physics, Vol. 40, pp. 263-293 https://doi.org/10.1016/0021-9991(81)90210-2
  18. Sweby, P. K. (1984). 'High resolution schemes using flux limiters for hyperbolic conservation laws.' SIAM Journal on Numerical Analysis, Vol. 21, pp. 995-1101 https://doi.org/10.1137/0721062
  19. Toro, E.F. (1999). Riemann solvers and numerical methods for fluid dynamics. Springer
  20. van Leer, B. (974). 'Towards the ultimate conservative difference scheme II. monotonicity and conservation combined in a second order scheme' Journal of Computational Physics, Vol. 14, pp. 361-370 https://doi.org/10.1016/0021-9991(74)90019-9
  21. van Leer, B. (1977a). 'Towards the ultimate conservative difference scheme III. upstream -centered finite difference schemes for ideal compressible flow.' Journal of Computational Physics, Vol. 23, pp. 263-275 https://doi.org/10.1016/0021-9991(77)90094-8
  22. van Leer, B. (1977b). 'Towards the ultimate conservative difference scheme N. a new approach to numerical convection.' Journal of Computational Physics, Vol. 23, pp. 276 -299 https://doi.org/10.1016/0021-9991(77)90095-X