References
- Beven, K. (1993). 'Prophecy, reality and uncertainty in distributed hydrological modeling.' Adv. Water Resour., vol. 16, pp. 41-51 https://doi.org/10.1016/0309-1708(93)90028-E
- Beven, K.J., and N.J. Kirkby (979). 'A physically based variable contributing area model of basin hydrology.' hydrol. Sci, B., vol. 24, pp. 43-69
- Brasington, J. and K. Richards (998). 'Interactions between model predictions, parameters and DTM scales for TOPMODEL.' Comput. Geosci., vol. 24, pp. 299-314 https://doi.org/10.1016/S0098-3004(97)00081-2
- Costa-Cabral, M., and S. J. Burges (994). 'Digital elevation model networks (DEMON): A model of flow over hillslope for computation of contributing and dispersal areas.' Water Resour. Res., vol. 30, pp. 1681-1692 https://doi.org/10.1029/93WR03512
- Fairfield, J. and Leyrnarie, P. (991), 'Drainage networks from grid digital elevation medels.' Water Resour. Res., vol. 27, pp. 709-717 https://doi.org/10.1029/90WR02658
- Freeman, T. G. (1991), 'Calculating catchment area with divergent flow based on a regular grid.' Comput. Geosci., vol. 17, pp, 413-422 https://doi.org/10.1016/0098-3004(91)90048-I
- Frank, S. W., P. Gineste, K Beven, and P. Mero (998). 'On constraining the predictions of a distributed model: The incorporation of fuzzy estimates of saturated areas into the calibration process.' Water Resour. Res., vol. 34, pp. 787-797 https://doi.org/10.1029/97WR03041
- Guntner, A., S. Uhlenbrook, J. Seibert and C. Leibundgut (1999), 'Multi-criterial validation of TOPMODEL in a mountainous catchment.' Hydrol. Process., vol. 13, pp. 1603-1620 https://doi.org/10.1002/(SICI)1099-1085(19990815)13:11<1603::AID-HYP830>3.0.CO;2-K
- Garbrecht, J., and Martz, L. W. (1997). 'The assignment of drainage direction over flat surfaces in raster digital elevation models.' J. Hydrol., vol. 193, pp. 204-213 https://doi.org/10.1016/S0022-1694(96)03138-1
- Grave, A. and C. Gouscuel-Odoux (997). 'Influence of topography on time and space distribution of soil surface water content.' Hydrol. Process., vol. 11, pp. 203-210 https://doi.org/10.1002/(SICI)1099-1085(199702)11:2<203::AID-HYP432>3.0.CO;2-K
- Grayson, R. B., I. D. Moore, and T. A. McMahon (1992). 'Physically based hydrologic modeling, I, A terrain-based model for investigative purposes.' Water Resour. Res., vol. 28, pp. 2639-2658 https://doi.org/10.1029/92WR01258
- Holmgren, P. (994). 'Multiple flow direction algorithms for runoff modeling in grid based elevation models and empirical elevation.' Hydrol. Process., vol. 8, pp. 327-334 https://doi.org/10.1002/hyp.3360080405
- Jenson, S. K., and J. O. Domingue (988). 'Extracting topographic structure from digital elevation data for geographic information system analysis.' Phonogram Eng. Remote Sens. vol. 54, pp. 1593-1600
- Kuo, W. L., T. S. Steenhuis., C. E. McCulloch, C. L. Mohler, D. A. Weinsten, S.D. DeGloria and D. P. Swaney (1999), 'Effect of grid size on runoff and soil moisture for a variable-source-area hydrology model.' Water Resour. Res., vol. 35, pp. 3419-3428 https://doi.org/10.1029/1999WR900183
- Mackay, D. S. and L. E. Band (0998). 'Extraction and representation of nested catchment areas from digital elevation models in lake-dominated topography.' Water Resour. Res., vol. 34, pp. 897-901 https://doi.org/10.1029/98WR00094
- Mart, L. W. and J. Garbrecht (1999). 'The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models.' Hydrol. Process., vol. 12, pp. 843-855 https://doi.org/10.1002/(SICI)1099-1085(199805)12:6<843::AID-HYP658>3.0.CO;2-R
- Mendicino, G., and A. Sole (1997). 'The information content theory for the estimation of the topographic index distribution used in TOPMODEL.' Hydrol. Process., vol. II, pp. 1099-1114 https://doi.org/10.1002/(SICI)1099-1085(199707)11:9<1099::AID-HYP547>3.0.CO;2-F
- O'Callaghan, J. F., and D. M. Mark (1984). 'The extraction of drainage networks from digital elevation data.' Comput. Vision Graphes Image Process., vol. 28, pp. 323-344 https://doi.org/10.1016/S0734-189X(84)80011-0
- O'Loughlin, E.M. (1986). 'Prediction of surface saturation zones in natural catchments by topographic analysis.' Water Resour. Res., vol. 22, pp. 794-804
-
Quinn, P. F., K. Beven and R. Lamb (1995). 'The ln(a/tan
${\beta}$ ) index : How to calculate it and how to use it within the TOPMODEL framework.' Hydrol. Process., vol. 9, pp. 161-182 https://doi.org/10.1002/hyp.3360090204 - Quinn, P., K. Beven, P. Chevallier, and O. Planchon (1991). 'The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models.' Hydrol. Process., vol. 5, pp. 59-79 https://doi.org/10.1002/hyp.3360050106
- Sanlnier G. M., K. Beven and C. Obled (1997). 'Digital elevation analysis for distributed hydrological modeling: Reducing scale dependence in effective hydraulic conductivity values.' Water Resour. Res., vol. 33, pp. 2097-2101 https://doi.org/10.1029/97WR00652
- Vertessy, R. A., and H. Elsenbeer (1999). 'Distributed modeling of storm flow generation in an Amazonian rain forest catchment Effects of model parameterization.' Water Resour. Res., vol. 35, pp. 2173-2187 https://doi.org/10.1029/1999WR900051
- Walker, J. P. and G. R. Willgoose (1999). 'On the effect of digital elevation model accuracy on hydrology and geomorphology.' Water Resour. Res., vol. 35, pp. 2259-2268
- Western, A W., R. B. Graysen, B. G nter, G. R. Willgoose and T. A McMahon (1999). 'Observed spatial organization of soil moisture and its relation to terrain indices.' Water Resour. Res., vol. 35, pp. 797 -810 https://doi.org/10.1029/1998WR900065
- Wigmosta, M. S. and D. P. Lettenmaier (1999). 'A comparison of simplified methods for routing topographically driven subsurface flow.' Water Resour. Res., vol. 35, pp. 255-264 https://doi.org/10.1029/1998WR900017
- Wolock, D. M. and McCabe Jr. G. J. (1995). 'Comparison of single and multiple flow direction algorithms for computing topographic parameters in TOPMODEL.' Water Resour. Res., vol. 31, pp. 1315-1324 https://doi.org/10.1029/95WR00471
- Zhang, W. and D. R. Montgomery (994). 'Digital elevation model grid size, landscape representation, and hydrologic simulations.' Water Resour. Res., vol. 30, pp. 1019-1028 https://doi.org/10.1029/93WR03553