A Digital Elevation Analysis : Sparially Distributed Flow Apportioning Algorithm

수치 고도 분석 : 분포형 흐름 분배 알고리즘

  • 김상현 (부산대학교 환경공학과) ;
  • 김경현 (부산대학교 환경기술·산업개발연구센터) ;
  • 정선희 (한국환경정책평가연구원)
  • Published : 2001.06.01

Abstract

A flow determination algorithm is proposed for the distributed hydrologic model. The advantages of a single flow direction scheme and multiple flow direction schemes are selectively considered to address the drawbacks of existing algorithms. A spatially varied flow apportioning factor is introduced in order to accommodate the accumulated area from upslope cells. The channel initiation threshold area(CIT) concept is expanded and integrated into the spatially distributed flow apportioning algorithm in order to delineate a realistic channel network. An application of a field example suggests that the linearly distributed flow apportioning scheme provides some advantages over existing approaches, such as the relaxation of over-dissipation problems near channel cells, the connectivity feature of river cells, the continuity of saturated areas and the negligence of the optimization of few parameters in existing algorithms. The effects of grid sizes are explored spatially as well as statistically.

단일 흐름 기법과 다방향 흐름 기법의 장점을 선택적으로 고려하여 기존 알고리즘의 약점을 보완하기 위한 분포형 수문모형의 흐름 분배 알고리즘을 제안하였다. 상경사(upslop) 격자로부터의 누적 면적을 조절하기 위해 공간적으로 변화된 흐름 분배 상수가 도입되었다. 또한 실제 수로망을 표현하기 위해 수로형성면적(channel initiation threshold area; CIT) 개념을 확장하여 흐름 분배 알고리즘에 결합시켰다. 실제 유역에 대한 적용 결과, 선형적으로 분포된 흐름 분배 기법이 기존의 접근방법에 대한 몇가지 장점을 보였는데, 예를 들어 수로 근처 격자에서의 과다한 흐름 분산 문제의 완화, 수로 격자의 연결성, 포화면적의 연속성과 기존 알고리즘에서의 매개변수 보정의 무시와 같은 것이다. 그리고 격자 크기의 영향이 통계적으로 뿐만아니라 공간적으로 검토되었다.

Keywords

References

  1. Beven, K. (1993). 'Prophecy, reality and uncertainty in distributed hydrological modeling.' Adv. Water Resour., vol. 16, pp. 41-51 https://doi.org/10.1016/0309-1708(93)90028-E
  2. Beven, K.J., and N.J. Kirkby (979). 'A physically based variable contributing area model of basin hydrology.' hydrol. Sci, B., vol. 24, pp. 43-69
  3. Brasington, J. and K. Richards (998). 'Interactions between model predictions, parameters and DTM scales for TOPMODEL.' Comput. Geosci., vol. 24, pp. 299-314 https://doi.org/10.1016/S0098-3004(97)00081-2
  4. Costa-Cabral, M., and S. J. Burges (994). 'Digital elevation model networks (DEMON): A model of flow over hillslope for computation of contributing and dispersal areas.' Water Resour. Res., vol. 30, pp. 1681-1692 https://doi.org/10.1029/93WR03512
  5. Fairfield, J. and Leyrnarie, P. (991), 'Drainage networks from grid digital elevation medels.' Water Resour. Res., vol. 27, pp. 709-717 https://doi.org/10.1029/90WR02658
  6. Freeman, T. G. (1991), 'Calculating catchment area with divergent flow based on a regular grid.' Comput. Geosci., vol. 17, pp, 413-422 https://doi.org/10.1016/0098-3004(91)90048-I
  7. Frank, S. W., P. Gineste, K Beven, and P. Mero (998). 'On constraining the predictions of a distributed model: The incorporation of fuzzy estimates of saturated areas into the calibration process.' Water Resour. Res., vol. 34, pp. 787-797 https://doi.org/10.1029/97WR03041
  8. Guntner, A., S. Uhlenbrook, J. Seibert and C. Leibundgut (1999), 'Multi-criterial validation of TOPMODEL in a mountainous catchment.' Hydrol. Process., vol. 13, pp. 1603-1620 https://doi.org/10.1002/(SICI)1099-1085(19990815)13:11<1603::AID-HYP830>3.0.CO;2-K
  9. Garbrecht, J., and Martz, L. W. (1997). 'The assignment of drainage direction over flat surfaces in raster digital elevation models.' J. Hydrol., vol. 193, pp. 204-213 https://doi.org/10.1016/S0022-1694(96)03138-1
  10. Grave, A. and C. Gouscuel-Odoux (997). 'Influence of topography on time and space distribution of soil surface water content.' Hydrol. Process., vol. 11, pp. 203-210 https://doi.org/10.1002/(SICI)1099-1085(199702)11:2<203::AID-HYP432>3.0.CO;2-K
  11. Grayson, R. B., I. D. Moore, and T. A. McMahon (1992). 'Physically based hydrologic modeling, I, A terrain-based model for investigative purposes.' Water Resour. Res., vol. 28, pp. 2639-2658 https://doi.org/10.1029/92WR01258
  12. Holmgren, P. (994). 'Multiple flow direction algorithms for runoff modeling in grid based elevation models and empirical elevation.' Hydrol. Process., vol. 8, pp. 327-334 https://doi.org/10.1002/hyp.3360080405
  13. Jenson, S. K., and J. O. Domingue (988). 'Extracting topographic structure from digital elevation data for geographic information system analysis.' Phonogram Eng. Remote Sens. vol. 54, pp. 1593-1600
  14. Kuo, W. L., T. S. Steenhuis., C. E. McCulloch, C. L. Mohler, D. A. Weinsten, S.D. DeGloria and D. P. Swaney (1999), 'Effect of grid size on runoff and soil moisture for a variable-source-area hydrology model.' Water Resour. Res., vol. 35, pp. 3419-3428 https://doi.org/10.1029/1999WR900183
  15. Mackay, D. S. and L. E. Band (0998). 'Extraction and representation of nested catchment areas from digital elevation models in lake-dominated topography.' Water Resour. Res., vol. 34, pp. 897-901 https://doi.org/10.1029/98WR00094
  16. Mart, L. W. and J. Garbrecht (1999). 'The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models.' Hydrol. Process., vol. 12, pp. 843-855 https://doi.org/10.1002/(SICI)1099-1085(199805)12:6<843::AID-HYP658>3.0.CO;2-R
  17. Mendicino, G., and A. Sole (1997). 'The information content theory for the estimation of the topographic index distribution used in TOPMODEL.' Hydrol. Process., vol. II, pp. 1099-1114 https://doi.org/10.1002/(SICI)1099-1085(199707)11:9<1099::AID-HYP547>3.0.CO;2-F
  18. O'Callaghan, J. F., and D. M. Mark (1984). 'The extraction of drainage networks from digital elevation data.' Comput. Vision Graphes Image Process., vol. 28, pp. 323-344 https://doi.org/10.1016/S0734-189X(84)80011-0
  19. O'Loughlin, E.M. (1986). 'Prediction of surface saturation zones in natural catchments by topographic analysis.' Water Resour. Res., vol. 22, pp. 794-804
  20. Quinn, P. F., K. Beven and R. Lamb (1995). 'The ln(a/tan ${\beta}$) index : How to calculate it and how to use it within the TOPMODEL framework.' Hydrol. Process., vol. 9, pp. 161-182 https://doi.org/10.1002/hyp.3360090204
  21. Quinn, P., K. Beven, P. Chevallier, and O. Planchon (1991). 'The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models.' Hydrol. Process., vol. 5, pp. 59-79 https://doi.org/10.1002/hyp.3360050106
  22. Sanlnier G. M., K. Beven and C. Obled (1997). 'Digital elevation analysis for distributed hydrological modeling: Reducing scale dependence in effective hydraulic conductivity values.' Water Resour. Res., vol. 33, pp. 2097-2101 https://doi.org/10.1029/97WR00652
  23. Vertessy, R. A., and H. Elsenbeer (1999). 'Distributed modeling of storm flow generation in an Amazonian rain forest catchment Effects of model parameterization.' Water Resour. Res., vol. 35, pp. 2173-2187 https://doi.org/10.1029/1999WR900051
  24. Walker, J. P. and G. R. Willgoose (1999). 'On the effect of digital elevation model accuracy on hydrology and geomorphology.' Water Resour. Res., vol. 35, pp. 2259-2268
  25. Western, A W., R. B. Graysen, B. G nter, G. R. Willgoose and T. A McMahon (1999). 'Observed spatial organization of soil moisture and its relation to terrain indices.' Water Resour. Res., vol. 35, pp. 797 -810 https://doi.org/10.1029/1998WR900065
  26. Wigmosta, M. S. and D. P. Lettenmaier (1999). 'A comparison of simplified methods for routing topographically driven subsurface flow.' Water Resour. Res., vol. 35, pp. 255-264 https://doi.org/10.1029/1998WR900017
  27. Wolock, D. M. and McCabe Jr. G. J. (1995). 'Comparison of single and multiple flow direction algorithms for computing topographic parameters in TOPMODEL.' Water Resour. Res., vol. 31, pp. 1315-1324 https://doi.org/10.1029/95WR00471
  28. Zhang, W. and D. R. Montgomery (994). 'Digital elevation model grid size, landscape representation, and hydrologic simulations.' Water Resour. Res., vol. 30, pp. 1019-1028 https://doi.org/10.1029/93WR03553