Numerical Simulation of Irregular Waves Over a Shoal Using Parabolic Wave Model

포물형 파랑모형을 이용한 수중천퇴상 불규칙파의 수치모의

  • 윤성범 (한양대학교 토목.환경공학과) ;
  • 이정욱 (한국건설기술연구원 수자원환경연구부) ;
  • 연영진 (해양수산부 부산항만건설사무소) ;
  • 최병호 (성균관대학교 토목.환경공학과)
  • Published : 2001.06.01

Abstract

A numerical model based on the wide-angle parabolic approximation equation is developed for the accurate simulation of the directional spreading and partial breaking of irregular waves. This model disintegrates the irregular waves into a series of monochromatic wave components, and the simultaneous calculations are made for each wave component. Then, the computed wave components are superposed to get the wave height of irregular waves. To consider the partial breaking of irregular waves in the computation the amount of energy dissipation due to breaking is estimated using the superposed wave height. The accuracy of the developed model is tested by comparing the numerical results with the experimental measurements reported earlier. In the case of non-breaking waves a considerable accuracy of the model is observed for both regular and irregular waves. On the contrary it is found that the accuracy is significantly degenerated for the case of breaking waves. Some analyses for the accuracy degeneration are presented.

불규칙파의 방향분산과 부분쇄파의 정도 높게 고려하기 위해 광각 포물형 근사식을 이용하는 수치모형이 수립되었다. 이 수치모형은 불규칙파를 여러 개의 단일주기의 규칙파로 분해한 다음, 각 성분파를 동시계산하여 중첩함으로써 합성파고를 구한다. 불규칙파의 부분쇄파를 고려하기 위해 합성파고를 이용하여 쇄파에 의한 에너지 감쇠량을 산정한다. 기존의 불규칙파 수리실험 결과와 비교하여 수립된 수치모형의 정확성을 검사한 바, 비쇄파의 경우 규칙파와 불규칙파 모두에 대해 상당한 정확도가 있음이 확인되었으나, 쇄파 발생 시에는 수치모형의 정도가 크게 저하됨을 발견하였으며, 그 이유에 대한 분석을 제시하였다.

Keywords

References

  1. 한국해안·해양공학회지 v.5 no.3 천해에서 불규칙파의 변이 유동훈
  2. 한국해안·해양공학회지 v.17 no.2 경기만 조석 조건에서의 파랑변이 유동훈;김지웅
  3. 한양대학교 환경과학논문집 v.16 비선형 분산효과가 파의 굴절 및 회절에 미치는 영향 윤성범;이종인
  4. 대한토목학회논문집 v.21 no.1-B 독도 해역의 파랑전파 특성 전인식;황연호;오병철;심재설
  5. 한국해안·해양공학회지 v.8 no.2 영일만의 불규칙파 모형 정신택;채장원;이동영
  6. Proc. of the 16th Intl. Conf. on Coastal Engineering. Energy loss and setup due to breaking of random waves Battjes, J.A.;Janssen, J.P.F.M.
  7. Proc. of the 13th Coastal Engrg. Conf. Computation of combined refraction-diffraction Berkhoff, J.C.W.
  8. Communication on Hydraulics Gravity waves on water with non-uniform depth and current Booij, N.
  9. Directional spectrum estimation for the $S_{xy}$ gages Borgman, L.E.
  10. J. Geophysical Res. v.90 no.C1 Similarity of the wind wave spectrum in finite depth water Bouws, E.;Guther, H.;Rosenthal, W.;Vincent, C.L.
  11. MIKE21 User Guide and Reference Manual DHI
  12. Random Seas and Design of Maritime Structures Goda, Y.
  13. The TMA shallow-water spectrum description and application Huges, S.A.
  14. J. Geophysical Res. v.89 A note on linear surface wave-current interaction over slowly varying topography Kirby, J.T.
  15. J. Geophysical Res. v.91 no.C1 Higher-order approximations in the parabolic equation method for water waves Kirby, J.T.
  16. J. Fluid Mech v.136 A parabolic equation for combined refraction and diffraction of Stokes waves by mildly varying topography Kirby, J.T.;Dalrymple, R.A.
  17. Coastal Engrg. v.8 Verification of a parabolic equation for propagation of weakly-nonlinear wave Kirby, J.T.;Dalrymple, R.A.
  18. Coastal Engineering. v.9 An approximate model for nonlinear dispersion in monochromatic wave propagation model Kirby, J.T.;Dalrymple, R.A.
  19. J. Fluid Mech v.141 Refraction-diffraction model for weakly nonlinear water waves Liu, P.L.-F.;Tsay, T.-K.
  20. J. of Waterway, Port, Coastal, and Ocean Engineering v.116 no.3 Numerical simulation of irregular wave propagation over shoal Panchang, V.G.;Pearce, B.R.;Briggs, M.J.
  21. J. Fluid Mech v.95 On the parabolic equation method for water-wave propagation Radder, A.C.
  22. J. of Waterway, Port, Coastal, and Ocean Engineering v.119 no.5 Application of angular spectrum model to simulation of irregular wave propagation Suh, K.D.;Dalrymple, R.A.
  23. J. of Waterway, Port, Coastal, and Ocean Engineering v.115 no.2 Refraction-diffraction of irregular waves over a mound Vincent, C.L.;Briggs, M.J.
  24. J. of Waterway, Port, Coastal, and Ocean Engineering v.114 no.6 Diffraction of waves in caustics Yoo, D.;O'Connor, B.A.