Analytic derivation of the finite wordlength errors in fixed-point implementation of SDFT

SDFT 고정소수점 연산에 대한 유한 비트 오차영향 해석

  • Chang, Tae-Gyu (School of Electrical Engineering, Chung-Ang University) ;
  • Kim, Jae-Hwa (School of Electrical Engineering, Chung-Ang University)
  • 장태규 (중앙대학교 전자전기공학부) ;
  • 김재화 (중앙대학교 전자전기공학부)
  • Published : 2000.07.25

Abstract

Finite wordlength effect of the recursive implementation of SDFT(sliding-DFT) is analytically derived in this paper. Representation errors of the twiddle coefficients and the data registers are the two major causes of the spectral errors in the recursive implementation. The noise-to-signal ratio is analytically derived in terms of the coefficients wordlength, the data registers wordlength, and the DFT's block-length used in the computation Error dynamic equation is obtained from the recursive DFT and the probabilistic models for the coefficients error and the round-off error are introduced for the NSR derivation, The result of the NSR derivation is verified with the simulation data.

본 논문에서는 SDFT(sliding discrete-Fourier transform)을 순환식(recursive)으로 구현할 때 유한 비트 고정소수점 계산하여 발생하는 오차의 영향을 해석적으로 구하는 방법을 제시하고 이의 유도 과정을 기술하였다. 유한 비트 오차는 계수의 양자화 때문에 발생하는 계수오차와, 곱셈연산 후 반올림되는 유효자리 때문에 발생하는 반올림오차로 구성된다. 각각의 오차는 주파수 스펙트럼 추정오차를 야기 시키며, 이 스펙트럼 오차의 전력과 실제 스펙트럼의 전력 비(noise-to-signal power ratio NSR)를 진동계수를 표현하는 비트 수, DFT 값을 표현하는 비트 수, 그리고 DFT 구간길이에 대한 식으로 유도하였다. 유도과정은 SDFT 순환식(recursive equation)을 통해 유도한 오차방정식(error-dynamic equation)과 계수오차 및 반올림오차의 확률분포특성에 근거하였다. 해석적으로 유도한 NSR 결과를 시뮬레이션 실험을 통해 얻은 결과와 비교하여 타당성을 확인하였다.

Keywords

References

  1. Dulal C Kar, 'A CORDIC-based unified systolic architecture for shding window applications of discrete transforms,' IEEE Trans. on Signal Processing, vol. 44, no 2, pp 441-444, Feb 1996 https://doi.org/10.1109/78.485943
  2. K. J R. Liu, C T Chiu, K.K. Kolagotla, and J F Ja' Ja', 'Optimal unified architectures for the real-time computation of time-recursive discrete sinusoidal transforms,' IEEE Trans on Circuits Syst Video Technol, vol. 4, pp 168-180, Apr 1994 https://doi.org/10.1109/76.285623
  3. P. Yip and K. R. Rao, 'On the shift property of DCT's and DST's,' IEEE Trans on Acoust, Speech, Signal Processing, vol ASSP-35, pp 404-406, Mar. 1987 https://doi.org/10.1109/TASSP.1987.1165127
  4. Gene H. Hostetter, 'Recursive Discrete Fourier Transform,' IEEE Trans on Acoustics, Speech, and Signal Processing, Vol ASSP-28, No 28, pp 184-190, April 1980 https://doi.org/10.1109/TASSP.1980.1163389
  5. B Widrow, Ph Baudrenghem, M Vetterli, and P/ F. Titchener, 'Fundamental relations between the LMS algorithm and the DFT,' IEEE Trans. Circuits and Systems, Vol. CAS-34, No.7, pp. 814-819, July 1987 https://doi.org/10.1109/TCS.1987.1086208
  6. Frabcoise Beaufays, Bernard Widrow, 'On the Advantages of the LMS Spectrum Analyzer Over Nonadaptive Implementation of the Sliding-DFT,' IEEE Tran on Circuits and Systems-part I . Fundamental Theory and Applications, Vol 42, No 4, pp 218-220, April 1995 https://doi.org/10.1109/81.382476
  7. Gabor Peceh, 'A Common Structure for recursive Discrete Transforms,' IEEE Trans. on Circuits and Systems, Vol CAS-33, No. 10, pp. 1035-1036, Oct 1986 https://doi.org/10.1109/TCS.1986.1085844
  8. David C. Munson, Jr., and Bede Liu, 'ROM/ACC Realization of Digital Filters for Poles Near the Unit Circle,' IEEE Trans. on Circuits and Systems, Vol. CAS-27, No.2, pp. 147-151, Feb. 1980 https://doi.org/10.1109/TCS.1980.1084779
  9. Bede Liu, 'Effect of Finite Word Length on the Accuracy of Digital Filters-A review,' IEEE Trans. on Circuit Theory, Vol. CT-18, No. 6, pp. 670-677, Nov. 1971
  10. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice Hall, Englewood Cliffs, New Jersey, 1975
  11. B F Boroujeny, 'A comment on the computational complexity of sliding FFT,' IEEE Trans. on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 39, no. 12, pp. 875-876, Dec 1992 https://doi.org/10.1109/82.208583