볼록 이차 광원으로부터 완전음영부를 생성하는 알고리즘

An Algorithm for Generating the Umbra from a Convex Quadric Light Source

  • 유관희 (충북대학교 컴퓨터교육과) ;
  • 신성용 (한국과학기술원 전산학과)
  • 발행 : 2000.06.15

초록

3차원 공간상에서 볼록 영역 광원이 주어진 물체를 비추면 각 객체에 대해 두 가지 유형의 그림자 볼륨, 즉 주어진 객체에 의해 부분적으로 가려지는 그림자볼륨과 완전히 가려지는 그림자 볼륨이 생성된다. 이를 각각 반음영부(penumbra)와 완전음영부(umbra)라 한다. 본 논문에서는 원, 타원, 구, 타원체, 실린더 등과 같은 볼록 이차 광원으로부터 볼록 다각형의 완전음영부를 구하는 문제를 고려한다. 먼저 완전음영부의 경계 표면을 특성화하고, 이를 이용하여 완전음영부를 구하는 알고리즘을 제시한다.

An area light source in the three dimensional space shines past a scene polygon, to generate two types of shadow volumes for each scene polygon, i.e., one with partial occlusion and the other with the complete occlusion. These are called, penumbra and umbra, respectively. In this paper, consider the problem for computing the umbra of a convex polygon from convex quadric light sources such as circles, ellipses, spheres, ellipsoids and cylinders. First, we give characteristics of the boundary surfaces of the umbra and then propose an algorithm for generating the umbra using them.

키워드

참고문헌

  1. A.T. Campbell, Modeling Global Diffuse illumination for image synthesis, PhD Thesis, Dept. of Computer Science, Univ. of Texas at Austin, December 1991
  2. T. Nishita and E. Nakamae, 'Continuous tone representation of three-dimensional objects taking account of shadow and interreflection,' ACM Computer Graphics (Proc. of SIGGRAPH'85), 19(3), pp.23-30, 1985 https://doi.org/10.1145/325334.325169
  3. A. Watt and M. Watt, Advanced Animation and Rendering Techniques - Theory and Practices, Addison-Wesley, 1992
  4. K.-H. Yoo, Complete visibility in the 3D space and its related problems, PhD Thesis, KAIST, 1995
  5. T.Nishita and E. Nakamae, 'A shading model of parallel cylinder light sources,' Proc. of CG International' 92, pp.429-445, 1992
  6. H.Bao, J.Ying, and Q.Peng, 'Shading with curve light source,' EUROGRAPHICS'95, pp.217-227, 1985
  7. G. Heflin and G. Elber, 'Shadow volume generation from free form surfaces,' in Communicating with Virtual Worlds, Proceedings of CGI'93, pp.115-126, Springer-Verlag, June, 1993
  8. F.P. Preparata and D.E. Muller, 'Finding the intersection of n half-spaces in time O(nlogn),' Theoretical Computer Science, 8(1), pp.45-55, 1979 https://doi.org/10.1016/0304-3975(79)90055-0
  9. A. Aggarwal, L.J. Guibas, J. Saxe, and P.W. Shor, 'A linear-time algorithm for computing Voronoi diagram of a convex polygon,' Discrete Computational Geometry, Vol. 4, pp.591-604, 1989 https://doi.org/10.1007/BF02187749
  10. J. O'Rourke, Computational geometry in C, pp.70-166, Cambridge Unviersity Press,1994