Abstract
We propose, in this paper, a new query expansion technique with term reweighting. All terms in the documents feedbacked from a user, excluding stopwords, are selected as candidate terms for query expansion and reweighted using the relevance degree which is calculated from the term-distribution similarity between a candidate term and each term in initial query. The term-distribution similarity of two terms is a measure on how similar their occurrence distributions in relevant documents are. The terms to be actually expanded are selected using the relevance degree and combined with initial query to construct an expanded query. We use KT-set 1.0 and KT-set 2.0 to evaluate performance and compare our method with two methods, one with no relevance feedback and the other with Dec-Hi method which is similar to our method. based on recall and precision.
본 논문에서는 사용자의 적합 피드백을 기반으로 피드백 문서들에서 발생하는 용어들과 초기 질의와의 관련 정도를 이용하여 용어의 가중치를 산정하는 방법에 대하여 제안한다. 피드백 문서들에서 발생하는 용어들 중에서 불용어를 제외한 모든 용어들을 질의로 확장될 수 있는 후보 용어들로 선택하고 피드백 문서들에서 발생 빈도 유사성을 이용하여 초기 질의에 대한 후보 용어의 관련 정도를 산정하며, 피드백 문서들에서의 가중치와 관련 정도를 결합하여 후보 용어들의 가중치를 산정 하였다. 본 논문에서는 성능을 평가하기 위하여 KT-set 1.0과 KT-set 2.0을 사용하였으며, 성능의 상대적인 평가를 위하여 질의어를 확장하지 않은 방법, Dec-Hi방법들을 정확률-재현율을 사용하여 평가 하였다.