Numerical Model for Thermal Hydraulic Analysis in Cable-in-Conduit-Conductors

  • Wang, Qiuliang (Energy Laboratory, Samsung Advanced Institute of Technology) ;
  • Kim, Kee-Man (Energy Laboratory, Samsung Advanced Institute of Technology) ;
  • Yoon, Cheon-Seog (Department of Mechanical Engineering, Hannam University)
  • 발행 : 2000.09.01

초록

The issue of quench is related to safety operation of large-scale superconducting magnet system fabricated by cable-in-conduit conductor. A numerical method is presented to simulate the thermal hydraulic quench characteristics in the superconducting Tokamak magnet system, One-dimensional fluid dynamic equations for supercritical helium and the equation of heat conduction for the conduit are used to describe the thermal hydraulic characteristics in the cable-in-conduit conductor. The high heat transfer approximation between supercritical helium and superconducting strands is taken into account due to strong heating induced flow of supercritical helium. The fully implicit time integration of upwind scheme for finite volume method is utilized to discretize the equations on the staggered mesh. The scheme of a new adaptive mesh is proposed for the moving boundary problem and the time term is discretized by the-implicit scheme. It remarkably reduces the CPU time by local linearization of coefficient and the compressible storage of the large sparse matrix of discretized equations. The discretized equations are solved by the IMSL. The numerical implement is discussed in detail. The validation of this method is demonstrated by comparison of the numerical results with those of the SARUMAN and the QUENCHER and experimental measurements.

키워드

참고문헌

  1. Anderson, Dale A., Tannehill, J. C. and Pletcher, R. H., 1984,' Computational Fluid Mechanics and Heat Transfer, Hemispere Publishing Corporation
  2. Arp, V. D. and McCarty, R. D., Thermo-physical Properties of Helium-4 from O. 8 to 1500 K with Pressure to 200 MPa, NIST Technical Note 1334
  3. Balsamo, E. P., Bottura, L., Cicchelli, O., Gislon, P., Ricco, M. and Spadoni, M., 1993, 'Experimental Analysis and Computer Simulation on Stability Margin and Quench Behavior in a NbTi Forced Cooled Winding Pack,' IEEE Transaction on Magnetics Vol30, pp. 2142 -2146 https://doi.org/10.1109/20.305694
  4. Bottura, L., 1995, 'Numerical Aspects in the Simulation of Thermohydraulic Transients in CICe's,' J. of Fusion Energy, Vol. 14, pp. 13 -24 https://doi.org/10.1007/BF02214030
  5. Bottura, L., 1996, 'A Numerical Model for the Simulation of Quench in the ITER Magnets,' J. of Computational Physics, Vol. 125, pp. 26-41 https://doi.org/10.1006/jcph.1996.0077
  6. Bottura, L. and Zienkiewicz, O. C., 1991, 'Quench Analysis of Large Superconducting Magnets,' Cryogenics, Vol. 32, pp. 719-728
  7. Boturra, L., Marinucci, C., Luongo, C., Shimada, M., Mitchell, N., Takigami, H., Heller, R., Prestemon, S., Nocollet, S., Duchateau, J. L., Xiao, B. and Latypov, D., 1999, Heat Transfer Corrections, Cryosoft Report, CRYO/99/010.
  8. Buttora, L., EUR-FU XII/185/93
  9. Dresner, L., 1991 Superconductor Stability 90: A Review, Cryogenics, Vol. 31, pp. 489-498 https://doi.org/10.1016/0011-2275(91)90034-T
  10. Jiang, H., Oh, S., Ha, D., Ha, H., Bae, J., Kim, S., Ryu, R. and Wang, Q., 1998, 'Stability of Triplet NbTi Cable-in-Conduit Conductor,' Proceeding of Korea Electrical Engineering Conference, PE045
  11. Koizumi, N., Takahashi, Y. and Tsuji, H., 1996, 'Numerical Model Using an Implicit Finite Difference Algorithm for the Stability Simulation of a Cable-in-Conduit Conductor,' Cryogenics, Vol. 36, pp. 649-659 https://doi.org/10.1016/0011-2275(96)00065-3
  12. Lue, J. W., 1994, 'Review of Stability Experi-ments on Cable-in-Conduit Conductors,' Cryogenics, Vol. 34, pp. 779-786 https://doi.org/10.1016/0011-2275(94)90062-0
  13. Luougo, C. A., Loyd, R. J., Chen, F. K. and Peck, S. D., 1988, 'Thermal Hydraulic Simulation of Helium Expulsion from a Cable-in-Con-duit Conductor,' IEEE Transactions on Magnetics, Vol. 25, pp. 1589-1595
  14. Reddy, J. N., 1993, Finite Element Method, McGraw Hill, Inc
  15. Schultz, J. H., 1997, KSTAR Superconducting Magnets System, KSTAR design point definition workshop, Princeton Plasma Physics Laboratory, USA, pp. 205 - 243
  16. Schultz, J. H., 1998, KSTAR Design Descrip-tion Document, KSTAR Magnets System review, Samsung Advanced Institute of Technology, Korea, pp. 3-105
  17. Shaji, A., 1994, PFC/RR-94-5, Plasma Fusion Center Report
  18. Shaji, A. and Freiderg, J. P., 1994, 'Quench in Superconducting Magnets. I. Model and Numerical Implementation,' J. Applied Physics, Vol. 76, pp. 3149-3158 https://doi.org/10.1063/1.357498
  19. Shaji, A. and Freidberg, J. P., 1996, 'Theory of Hybrid Contact Discontinuities,' Physical Review Letter, Vol. 76, pp. 2710-2713 https://doi.org/10.1103/PhysRevLett.76.2710
  20. Shaji, A., Smith, S. P., Pourahimi, S. and Freidberg, J. P., 1998, 'Analysis pf the QUELL Experimant and Comparsions with Numerical Simulations (QUENCHER),' Cryogenics, Vol. 38, pp. 479-490 https://doi.org/10.1016/S0011-2275(98)00013-7
  21. Tao, W., 1987, Numerical Heat Transfer, Xi' an University Publishing Company
  22. Wang, Q., Oh, S., Ryu, K., Yoon, C. and Kim, K., 1999, 'Numerical Analysis on Stability Margin and Quench Behavior in Cable-in-Conduit NbTi Conductor,' IEEE Transactions on Applied Superconductivity, Vol. 9, pp. 620-624 https://doi.org/10.1109/77.783372
  23. Wang, Q., Yoon, C. and Kim, K., 2000, 'Analysis on Stability Margin of Nb3Sn Cable in-Conduit Conductor, to be Appeared in IEEE Transaction on Applied Superconductivity
  24. Wilson, M., 1983, Superconducting Magnets, Clarendon Press Oxford
  25. Wong, Robert, 1989, Program CICC, Flow and Heat Transfer in Cable-in-Conduit Conductor, UCID-2173, Lawrence Livermore National Laboratory
  26. Zanino, R., De Palo, S., and Bottura, L., 1995, 'A Two-Fluid Code for the Thermohydraulic Transient Analysis of CICC Superconducting Magnets,' J. of Fusion Energy, Vol. 14, pp. 25 -40 https://doi.org/10.1007/BF02214031