뉴로-퍼지 소프트웨어 신뢰성 예측

Neuro-Fuzzy Approach for Software Reliability Prediction

  • 이상운 (경상대학교 전자계산학과)
  • 발행 : 2000.04.15

초록

본 논문은 주어진 고장 데이타로부터 소프트웨어의 신뢰성 예측력 향상을 위해 뉴로-퍼지 시스템 연구를 수행하였다. 다른 소프트웨어로부터 수집된 10개의 고장 수 데이타와 4개의 고장시간 데이타에 대해 규칙의 수를 변경시키면서 다음 단계 예측을 실험하였다. 뉴로-퍼지 시스템의 예측력을 보이기 위해 다음 단계 예측에 대해 비교하였다. 실험 결과 뉴로-퍼지 시스템은 다양한 소프트웨어에 잘 적용되었다. 또한 널리 사용되고 있는 신경망과 통계적 소프트웨어 신뢰성 성장 모델의 예측력과 견줄 정도의 좋은 결과를 얻었다.

This paper explores neuro-fuzzy system in order to improve the software reliability predictability from failure data. We perform numerical simulations for actual 10 failure count and 4 failure time data sets from different software projects with the various number of rules. Comparative results for next-step prediction problem is presented to show the prediction ability of the neuro-fuzzy system. Experimental results show that neuro-fuzzy system is adapt well across different software projects. Also, performance of neuro-fuzzy system is favorably with the other well-known neural networks and statistical SRGMs.

키워드

참고문헌

  1. A. A. Abdel-Ghaly, P. Y. Chan and B. Littlewood, 'Evaluation of Competing Software Reliability Predictions,' IEEE Trans. Software Eng., Vol. SE-12, pp. 950-967, 1986
  2. B. M. Anna-Mary, 'A Study of the Musa Reliability Model,' M.S. dissertation, Univ. Maryland, 1980
  3. S. Brocklehurst, B. Y. Chan, B. Littlewood and J. Snell, 'Recalibrating Software Reliability Models,' IEEE Trans. Software Eng., Vol. 16, pp. 458-470, 1990 https://doi.org/10.1109/32.54297
  4. J. -S. R. Jang, 'ANFIS : Adaptive-Network- Based Fuzzy Inference System,' IEEE Trans. on Systems, Man., and Cybernetics, Vol. 23, No. 3, pp. 665-685, 1993 https://doi.org/10.1109/21.256541
  5. N. Karunanithi, D. Whitley and Y. K. Malaiya, 'Prediction of Software Reliability Using Connectionist Models,' IEEE Trans. Software Eng., Vol. 18, pp. 563-574, 1992 https://doi.org/10.1109/32.148475
  6. N. Karunanithi, D. Whitley and Y. K. Malaiya, 'Using Neural Networks in Reliability Prediction,' IEEE Software, Vol. 18, pp. 53-59, 1992 https://doi.org/10.1109/52.143107
  7. K. Matsumoto, T. Inoue, T. Kikuno, and K. Torii, 'Experimental Evaluation of Software Reliability Growth Models,' Proc. IEEE Conf. FTCS-18, pp. 148-153, 1988 https://doi.org/10.1109/FTCS.1988.5313
  8. J. D. Musa, A. Lannino, and K. Okumoto, 'Software Reliability : Measurement, Prediction, Application,' McGraw-Hill, New York, 1987
  9. J. D. Musa, 'Software Reliability Data,' Technical Report, Data and Analysis Center for Software, Rome Air Development Center, Griffins AFB, New York, 1979
  10. D. Nauck, 'Neuro-Fuzzy Systems : Review and Prospects,' Proc. 5th European Congress on Intelligent Techniques and Soft. Computing, Aachen, pp. 1044-1053, 1997
  11. D. Nauck and R. Kruse, 'A Fuzzy Neural Network Learning Fuzzy Control Rules and Membership Functions by Fuzzy Error Backpropagation,' Proc. IEEE Int. Conf. Neural Networks, ICNN'93, San Francisco, pp. 1022-1027, 1993 https://doi.org/10.1109/ICNN.1993.298698
  12. D. Nauck and R. Kruse, 'A Neuro-Fuzzy Approach to Obtain Interpretable Fuzzy Systems for Function Approximation', Proc. IEEE Conf. on Fuzzy Systems, Anchorage, AK, pp. 1106-1111, 1998 https://doi.org/10.1109/FUZZY.1998.686273
  13. M. Ohba, 'Software Reliability Analysis Models,' IBM H. Res. Develop., Vol. 28, pp. 428-443, 1984
  14. J. Y. Park, S. U. Lee, and J. H. Park, 'Neural Network Modeling for Software Reliability Prediction from Failure Time Data,' Journal of Electrical Eng. and Information Science, Vol. 4, No.4, pp. 533-538, 1999
  15. J. Y. Park, S. U. Lee, and J. H. Park, 'Predictive Filter for Software Reliability Prediction,' Submitted to Journal of Electrical Eng. and Information Science, 15. Sep. 1999
  16. M. L. Shooman, 'Probablistic Models for Software Reliability Prediction,' Statistical Computer Performance Evaluation, New York Academic, pp. 485-502, 1972
  17. Y. Thoma, K. Tokunaga, S. Nagase, and Y. Murata, 'Structural Approach to the Estimation of the Number of Residual Software Faults Based on the Hyper-Geometric Distribution,' IEEE Trans. on Software Eng., Vol. 15, pp. 345-355, 1989 https://doi.org/10.1109/32.21762
  18. Y. Thoma, H. Yamano, M. Ohba, and R. Jacoby, 'Parameter Estimation of the Hyper-Geometric Distribution model for Real Test/Debug Data,' Dept. Computer Science, Tokyo Inst. Tech., Tech. REP. 901002, 1990