참고문헌
- Bazant, Z.P. and Kim, S. (1979), "Plastic-fracturing theory for concrete", J. Engng. Mech., ASCE, 105(3), 407-428.
- Chen, A.C.T. and Chen, W.F. (1975), "Constitutive relations for concrete", J. Engng. Mech., ASCE, 101(4), August,465-479.
- Chen, W.F. (1994), "Theory of concrete plasticity", "Implementation and application for concretes", ConstitutiveEquations for Engineering Materials, II: Plasticity and Modeling, Elsevier.
- Crisfield, M.A. (1991), Non-linear Finite Element Analysis of Solids and Structures, John Wiley & Sons.
- Dragon, A. and Mroz, Z. (1979), "A continuum model for plastic-brittle behavior of rock and concrete", Int. J.Engng. Sci., 17.
- Ghosh, S. and Kikuchi, N. (1988), "Finite element formulation for the simulation of hot sheet metal formingprocesses", Int. J. Engng. Sci., 26(2), 143-161. https://doi.org/10.1016/0020-7225(88)90101-2
- Gilles, P.C., Borderie, C.L. and Fichant, S. (1995), "Applications and comparisons with plasticity and fracturemechanics", Damage Mechanics of Concrete Modeling, 17-36.
- Han, D.J. and Chen, W.F. (1985), "A nonuniform hardening plasticity model for concrete materials", J. Engng.Mech., ASCE, 4(4), December, 283-302.
- Hinton, E. and Owen, D.R.J. (1980), Finite Elements in Plasticity: Theory and Practice, Pineridge Press, Swansea,Wales.
- Hofstetter, G. and Taylor, R.L. (1990), "Non-associative Drucker-Prager plasticity at finite strains", Comm. inAppl. Num. Meth., 6, 583-589. https://doi.org/10.1002/cnm.1630060803
- Hofstetter, G., Simo J.C. and Taylor, R.L. (1993), "A modified cap model: Closest point solution algorithms",Computers and Structures, 46(2), 203-214. https://doi.org/10.1016/0045-7949(93)90185-G
- Hofstetter, G. and Mang, H.A. (1994), Computational Mechanics of Reinforced Concrete Structures, Printed inGermany.
- Krieg, R.D. and Krieg, D.B. (1977), "Accuracies of numerical solution methods for the elastic-perfectly plasticmodel", J. of Pres. Ves. Tech., Trans ASME, Nov., 510-515.
- Kupfer, H., Hilsdorf, H.K. and Rusch, H. (1969), "Behavior of concrete under biaxial stresses", ACI Journal,August, 656-665.
- Matthies, H.G. (1989), "A decomposition method for the integration of the elastic-plastic rate problem", Int. J.Numer. Meth. Engng., 28, 1-11. https://doi.org/10.1002/nme.1620280103
- Matzenmiller, A. and Taylor, R.L. (1994), "A return mapping algorithm for isotropic elastoplasticity", Int. J.Numer. Meth. Engng., 37, 813-826. https://doi.org/10.1002/nme.1620370507
- Meschke, G. (1996), "Consideration of aging of shotcrete in the context of a 3-D viscoplastic material model",Int. J. Numer. Meth. Engng., 39, 3123-3143. https://doi.org/10.1002/(SICI)1097-0207(19960930)39:18<3123::AID-NME993>3.0.CO;2-R
- Murray, D.W., Chitnuyanondh, L., Rijub-Agha, K.Y. and Wong, C. (1979), "Concrete plasticity theory for biaxialstress analysis", J. of Engng. Mech., ASCE, 105(6), December, 989-1006.
- Ohtani, Y. and Chen, W.F. (1988), "Multiple hardening plasticity for concrete material", J. of Engng. Mech.,ASCE, 114(11), 1890-1910. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:11(1890)
- Pietruszczak, S., Jiang, J. and Mirza, F.A. (1988), "An elastoplastic constitutive model for concrete", Int. J.Solids Struct., 24(7), 705-722. https://doi.org/10.1016/0020-7683(88)90018-2
- Schellekens, J.C.J. and Borst, R.D. (1990), "The use of the Hoffman yield criterion in finite element analysis ofanisotropic composites", Comp. & Struct., 37(6), 1097-1096. https://doi.org/10.1016/0045-7949(90)90021-S
- Schreyer, H.L., Kulak, R.F. and Kramer, J.M. (1979), "Accurate numerical solutions for elastic-plastic models",J. of Pres. Ves. Tech., Trans ASME, August, 226-234.
- Simo, J.C. and Taylor, R.L. (1985), "Consistent tangent operators for rate-independent elastoplasticity", Comp.Meth. in Appl. Mech. and Engng., 48, 101-118. https://doi.org/10.1016/0045-7825(85)90070-2
- Simo, J.C. and Hughes, T.J.R. (1987), "General return mapping algorithms for rate-independent plasticity",Constitutive Laws for Material: Theory and Applications, eds. C.S. Desai et al., Elsevier Sci Publishing Co Inc.
- Simo, J.C., Kennedy, J.G. and Godvindjee, S. (1988), "Unconditionally stable return mapping algorithms for nonsmoothmulti-surface plasticity amenable to exact linearization", Int. J. Numer. Meth. Engng., 26, 2161-2115. https://doi.org/10.1002/nme.1620261003
- Simo, J.C. and Govindjee, S. (1991), "Non-linear B-stability and symmetry preserving return mapping algorithmsfor plasticity and viscoplasticity", Int. J. Numer. Meth. Engng., 31, 151-176. https://doi.org/10.1002/nme.1620310109
- Tasuji, M.E., Slate, F.O. and Nilson, A.H. (1978), "Stress-strain response and fracture of concrete in biaxialloading", ACI Journal, July, 306-312.
- Willam, K.J. and Warnke, E.P. (1975), "Constitutive model for the triaxial behaviour of concrete", Int. Asso. for Bridgeand Struct. Engng., Seminar on concrete structure subjected to triaxial stresses, IABSE Proceedings, 19, 1-30.