DOI QR코드

DOI QR Code

Application of return mapping technique to multiple hardening concrete model

  • Lam, S.S. Eddie (Department of Civil and Structural Engineering, The Hong Kong Polytechnic University) ;
  • Diao, Bo (Department of Civil Engineering, Northern Jiaotong University)
  • Published : 2000.03.25

Abstract

Computational procedure within the framework of return mapping technique has been presented to integrate the constitutive behavior of a concrete model. Developed by Ohtani and Chen, this concrete model is based on multiple hardening concept, and is rate-independent and associative. Consistent tangent operator suitable for finite element analysis is derived to preserve the rate of convergence. Accuracy of the integration technique is verified and compared with available experimental data. Computational efficiency is demonstrated by comparing with results based on elasto-plastic tangent.

Keywords

References

  1. Bazant, Z.P. and Kim, S. (1979), "Plastic-fracturing theory for concrete", J. Engng. Mech., ASCE, 105(3), 407-428.
  2. Chen, A.C.T. and Chen, W.F. (1975), "Constitutive relations for concrete", J. Engng. Mech., ASCE, 101(4), August,465-479.
  3. Chen, W.F. (1994), "Theory of concrete plasticity", "Implementation and application for concretes", ConstitutiveEquations for Engineering Materials, II: Plasticity and Modeling, Elsevier.
  4. Crisfield, M.A. (1991), Non-linear Finite Element Analysis of Solids and Structures, John Wiley & Sons.
  5. Dragon, A. and Mroz, Z. (1979), "A continuum model for plastic-brittle behavior of rock and concrete", Int. J.Engng. Sci., 17.
  6. Ghosh, S. and Kikuchi, N. (1988), "Finite element formulation for the simulation of hot sheet metal formingprocesses", Int. J. Engng. Sci., 26(2), 143-161. https://doi.org/10.1016/0020-7225(88)90101-2
  7. Gilles, P.C., Borderie, C.L. and Fichant, S. (1995), "Applications and comparisons with plasticity and fracturemechanics", Damage Mechanics of Concrete Modeling, 17-36.
  8. Han, D.J. and Chen, W.F. (1985), "A nonuniform hardening plasticity model for concrete materials", J. Engng.Mech., ASCE, 4(4), December, 283-302.
  9. Hinton, E. and Owen, D.R.J. (1980), Finite Elements in Plasticity: Theory and Practice, Pineridge Press, Swansea,Wales.
  10. Hofstetter, G. and Taylor, R.L. (1990), "Non-associative Drucker-Prager plasticity at finite strains", Comm. inAppl. Num. Meth., 6, 583-589. https://doi.org/10.1002/cnm.1630060803
  11. Hofstetter, G., Simo J.C. and Taylor, R.L. (1993), "A modified cap model: Closest point solution algorithms",Computers and Structures, 46(2), 203-214. https://doi.org/10.1016/0045-7949(93)90185-G
  12. Hofstetter, G. and Mang, H.A. (1994), Computational Mechanics of Reinforced Concrete Structures, Printed inGermany.
  13. Krieg, R.D. and Krieg, D.B. (1977), "Accuracies of numerical solution methods for the elastic-perfectly plasticmodel", J. of Pres. Ves. Tech., Trans ASME, Nov., 510-515.
  14. Kupfer, H., Hilsdorf, H.K. and Rusch, H. (1969), "Behavior of concrete under biaxial stresses", ACI Journal,August, 656-665.
  15. Matthies, H.G. (1989), "A decomposition method for the integration of the elastic-plastic rate problem", Int. J.Numer. Meth. Engng., 28, 1-11. https://doi.org/10.1002/nme.1620280103
  16. Matzenmiller, A. and Taylor, R.L. (1994), "A return mapping algorithm for isotropic elastoplasticity", Int. J.Numer. Meth. Engng., 37, 813-826. https://doi.org/10.1002/nme.1620370507
  17. Meschke, G. (1996), "Consideration of aging of shotcrete in the context of a 3-D viscoplastic material model",Int. J. Numer. Meth. Engng., 39, 3123-3143. https://doi.org/10.1002/(SICI)1097-0207(19960930)39:18<3123::AID-NME993>3.0.CO;2-R
  18. Murray, D.W., Chitnuyanondh, L., Rijub-Agha, K.Y. and Wong, C. (1979), "Concrete plasticity theory for biaxialstress analysis", J. of Engng. Mech., ASCE, 105(6), December, 989-1006.
  19. Ohtani, Y. and Chen, W.F. (1988), "Multiple hardening plasticity for concrete material", J. of Engng. Mech.,ASCE, 114(11), 1890-1910. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:11(1890)
  20. Pietruszczak, S., Jiang, J. and Mirza, F.A. (1988), "An elastoplastic constitutive model for concrete", Int. J.Solids Struct., 24(7), 705-722. https://doi.org/10.1016/0020-7683(88)90018-2
  21. Schellekens, J.C.J. and Borst, R.D. (1990), "The use of the Hoffman yield criterion in finite element analysis ofanisotropic composites", Comp. & Struct., 37(6), 1097-1096. https://doi.org/10.1016/0045-7949(90)90021-S
  22. Schreyer, H.L., Kulak, R.F. and Kramer, J.M. (1979), "Accurate numerical solutions for elastic-plastic models",J. of Pres. Ves. Tech., Trans ASME, August, 226-234.
  23. Simo, J.C. and Taylor, R.L. (1985), "Consistent tangent operators for rate-independent elastoplasticity", Comp.Meth. in Appl. Mech. and Engng., 48, 101-118. https://doi.org/10.1016/0045-7825(85)90070-2
  24. Simo, J.C. and Hughes, T.J.R. (1987), "General return mapping algorithms for rate-independent plasticity",Constitutive Laws for Material: Theory and Applications, eds. C.S. Desai et al., Elsevier Sci Publishing Co Inc.
  25. Simo, J.C., Kennedy, J.G. and Godvindjee, S. (1988), "Unconditionally stable return mapping algorithms for nonsmoothmulti-surface plasticity amenable to exact linearization", Int. J. Numer. Meth. Engng., 26, 2161-2115. https://doi.org/10.1002/nme.1620261003
  26. Simo, J.C. and Govindjee, S. (1991), "Non-linear B-stability and symmetry preserving return mapping algorithmsfor plasticity and viscoplasticity", Int. J. Numer. Meth. Engng., 31, 151-176. https://doi.org/10.1002/nme.1620310109
  27. Tasuji, M.E., Slate, F.O. and Nilson, A.H. (1978), "Stress-strain response and fracture of concrete in biaxialloading", ACI Journal, July, 306-312.
  28. Willam, K.J. and Warnke, E.P. (1975), "Constitutive model for the triaxial behaviour of concrete", Int. Asso. for Bridgeand Struct. Engng., Seminar on concrete structure subjected to triaxial stresses, IABSE Proceedings, 19, 1-30.