Photocatalytic Destruction of a Mordant Yellow-12 Using Rutile-$TiO_2$

Rutile-$TiO_2$를 이용한 Mordant Yellow-12의 광촉매 분해반응

  • Kim, Chang Suk (School of Science Education, Chungbuk National University) ;
  • Choi, In Won (School of Science Education, Chungbuk National University)
  • 김창석 (충북대학교 사범대학 과학교육학부) ;
  • 최인원 (충북대학교 사범대학 과학교육학부)
  • Received : 2000.05.30
  • Published : 2000.10.25

Abstract

The photocatalytic degradation of Mordant Yellow-12 (MY-12) was investigated using a UV-Visible Spectrophotometer and pH meter. The UV-Visible absorbance spectra of the MY-12 contaminated water before and after treatment were presented in figure. The decrease of absorbance occurs at the range of 250 and 450 nm, this result suggests that photocatalytic degradation involves destruction of the aromatic rings in this experiment. More than 32% of the MY-12 was decomposed after one hour in 26-W fluorescent lamp, whereas it was 17% and 24% respectively in 15-W and 21-W lamps. MY-12 was decomposed completely after three hours in 26-W fluorescent lamp. The destruction rate constants were calculated from the change of absorbance and pH.

$TiO_2$ 촉매 하에 염료 Mordant Yellow-12를 광촉매 분해하였다. 이때 사용한 광원은 각각 15-W, 21-W와 26-W 형광 램프를 이용하였다. 분해 정도는 자외선-가시광선 분광기와 pH 메타를 이용하였다. 실험 결과 반응 1시간 후에 각 광원에 따라 각각 17%, 24%, 34% 이상의 분해를 보였고 완전히 분해되는데는 각각 3, 4, 5시간 걸렸다. pH의 변화는 흡광도의 변화와 같이 급격한 결과를 나타내지 않았다. 분해 반응 속도는 15-W 보다 26-W에서 2배의 빠를 분해 반응속도를 보였다.

Keywords

References

  1. Chem. Eng. News v.76 no.14 W. Schultz
  2. Photocatalytic Purification and Treatment of Water and Air D.H. Ollis;H. Eds. Al-Akabi
  3. Environ. Sci. Technol. v.25 no.494 C. Kormann;D.W. Bahneimann;M.R. Hoffmann
  4. ibid. v.25 no.1522 D.H. Ollis;E. Pelizzetti;N. Serpone
  5. Chemosphere v.25 no.343 E. Pelizzetti;C. Minero;V. Carlin;E. Borgarello
  6. Environ. Sci. Technol. v.13 no.416 L.H. Keith;W.A. Telliard
  7. ibid. v.19 no.480 D.H. Ollis
  8. Langmuir v.7 no.3081 R. Terzinan;N. Serpone;R.B. Draper;M.A. Fox;E. Pelizzetti
  9. Environ. Sci. Technol. v.27 no.1681 G Mills;M.R. Hoffmann
  10. ibid. v.30 no.3327 S.D. Richardson;A.d. Jr. Thruston;T.W. Collette
  11. J. Chem. Soc. Eng. Trans. v.176 no.1138 J.M. Herrman;P. Pichate
  12. J. Chem. Ed. v.72 no.4 K.D. Giglio;D.B. Green;B. Hutchinson
  13. Environ. Sci. Technol. v.30 no.817 A. Haarstrick;O.M. Kut;E. Heinzle
  14. J. Chem. Ed. v.75 no.6 J.C. Yu;Y.L. Chan
  15. J. Chem. Ed. v.76 no.12 J.A. Bumpus;J. Tricker;K. Andrejewski;H. Rhoads;M. Tatarko
  16. J. Chem. Soc. Faraday Trans. v.85 no.1291 R.W. Matthews
  17. J. Chem. Ed. v.70 no.10 R.F.P. Nogueira;W.F. Jardim
  18. J. Chem. Soc. Faraday Trans. v.2 no.82 J.R. Darwent;A. Lepre
  19. J. Am. Chem. Soc. v.109 no.6632 L. Spanhel;H. Weller;A. Henglein
  20. Wat. Res. v.24 no.543 A.P. Davis;C.P. Huang
  21. Environ. Sci. Technol. v.25 no.494 C. Kormann;D.W. Bahnemann;M.R. Hoffmann
  22. Chem. Rev. v.93 no.341 M.A. Fox;M.T. Dulay
  23. Chem. Rev. v.95 no.69 M.R. Hoffmann;S.T. Martin;W. Choi;D.W. Bahnemann