판재성형의 유한요소해석

  • Published : 2000.04.01

Abstract

Recently, finite element method has been used as an effective tool in the design process of sheet metal forming. In the present study, an implicit method and an explicit method have been developed for 2D analysis and 3D analysis, respectively, and applied to several processes including plane strain draw bending and TWB sqaure cup drawing. Also, commercial codes are used for geometrically complex problems, such as tube hydroforming, "L" cup deep drawing and side frame forming. In this paper, basic formulations used in the methods are introduced and results obtained from the applications are discussed.discussed.

Keywords

References

  1. Oh, S. I., and Kobayashi, S., 'Finite element analysis of plante strain sheet bending,' Int. J. Mech. Sci., Vol. 22, pp. 583-594, 1979 https://doi.org/10.1016/0020-7403(80)90020-X
  2. Tang, S. C., and Chappuis, L. B., 'Analysis of sheet metal forming process by a general thin shell element,' Proc. NUMIFORM '89, pp. 507-514, 1989
  3. Wang, N.M.;Budiansky,B. Analysis of sheet metal stamping by a finite element method J. Appl. Mech. Trans. ASME
  4. Honecker,A.;Mattiason,K. Finite element procedures for 3D sheet forming simulation Proc. NUMIFORM '89
  5. Hallquist, J. O., Wainscott, B., and Schweizerhof, K., 'Improved simulation of the sheet metal forming using LS-DYNA3D on parallel computers,' Proc. NUMISHEET '93, pp. 137-160, 1993
  6. Yang, D. Y., Chung, W. J., Song, I. S., Yoo, D. J., and Lee, J. H., 'Comparative investigation into implicit, explicit and iterative implicit/explicit schemes for simulation of sheet metal forming processes,' Proc. NUMISHEET '93, pp. 35-52, 1993
  7. Hughes, T. J. R., and Liu, W. K., 'Nonlinear finite element analysis of shells: Part Ⅰ. Three-dimensional shells,' Comp. Meth. Appl. Mech. Eng., Vol. 26, pp. 331-362, 1981 https://doi.org/10.1016/0045-7825(81)90121-3
  8. Belytschko, T., Lin, J. I., and Tsay, C. S., 'Explicit algorithms for the nonlinear dynamics of shells,' Comp. Meth. Appl. Mech. Eng., Vol. 42, pp. 225-251, 1984 https://doi.org/10.1016/0045-7825(84)90026-4
  9. Zhu, Y., and Zacharia, T., 'A new one-point quadrature, quadrilateral shell element with drilling degrees of freedom,' Comp. Meth. Appl. Mech. Eng., Vol. 136, pp. 165-203, 1996 https://doi.org/10.1016/0045-7825(96)01059-6
  10. Finn, M. J., Galbraith, P. C., Wu, L., Hallquist, J. O., Lum, L., and Lin, T.-L., 'Use of a coupled explicit-implicit solver for calculating spring-back in automotive body panels,' J.Mat. Proc. Tech., Vol. 50, pp. 395-409, 1995 https://doi.org/10.1016/0924-0136(94)01401-L
  11. Geiger, M., 'Synergy of laser material processing amdn metal forming,' Annals of the CIRP, Vol. 43, pp. 563-570, 1994
  12. Prange, W., Schneider, C., and Selige, A. J., 'Application of Laser-Beam-Welded Sheet Metal,' SAE Tech. Paper Series, No. 890853, 1989
  13. Proc. 2nd Symposium on Sheet Metal Forming (eds., Oh, S. I., Keum, Y. T., and Kim, H. J,), The Korean Society for Technology of Plasticity, Korea, 1998
  14. Shi, M. F., Pickett, K. M., and Bhatt, K. K., 'Formability issues in the application of tailor welded blank sheets,' SAE Tech. Paper Series, No.930278, 1993
  15. Ahmad, S., Irons, B. M., and Zienkiewiz, O. C., 'Analysis of thick and thin shell structures by curved finite elements.' Int. J. Num. Meth. Eng., Vol. 2, pp. 419-451, 1970 https://doi.org/10.1002/nme.1620020310
  16. Belytschko, T., Tsay, C. S., and Liu, W. K., 'A stabilization matrix for the bilinear Mindlin plate element,' Comp. Meth. Appl. Mech. Eng., Vol. 29, pp. 313-327, 1981 https://doi.org/10.1016/0045-7825(81)90048-7
  17. Belytschko,T. and Leviathan,I. Projection schemes for one-point quadrature shell elements Comp. Meth. Appl. Mech. Eng., Vol.115, pp.277-286, 1994 https://doi.org/10.1016/0045-7825(94)90063-9
  18. Belytschko, T., and Leviathan, I., 'Physical stabilization of 4-node shell element wit one-point quadrature,' Comp. Meth. Appl. Mech. Eng., Vol. 113, pp. 321-350, 1994 https://doi.org/10.1016/0045-7825(94)90052-3
  19. Hill,R. A theory of the yielding and plastic flow of anisotropic metals Proc. Royal Soc. London Series A
  20. Barlat, F., Lege, D. J., and Berm, J. C., 'A six-component yield function for anisotropic materials,' Int. J. Plasticity, Vol. 7, pp. 693-712, 1991 https://doi.org/10.1016/0749-6419(91)90052-Z
  21. Zhong, Z. H., Finite Element Procedures for Contact-Impact Problems, Oxford University Press, New York, 1993
  22. Proc. NUMISHEET '93 (eds., Machinouchi, A., Nakamachi, E., Onate, E., and Wagoner, R. H.), 1993
  23. Proc. NUMISHEET '93 Machinouchi,A.(ed);Nakamachi,E.(ed);Onate,E.(ed);Wagoner,R.H.(ed)