• Title/Summary/Keyword: L cup drawing

Search Result 16, Processing Time 0.021 seconds

Numerical Simulation for a Multi-Stage Deep Drawing of Anisotropic SUS409L Sheet into a Rectangular Cup (초기 이방성 SUS409L 박판재의 직사각 컵 성형을 위한 다단 디프드로잉 공정 적용에 관한 수치적 연구)

  • Park, J.W.;Ku, T.W.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.133-142
    • /
    • 2013
  • Recently, electric vehicles and hybrid cars are being promoted as alternatives to reduce automobile emissions. Generally, thin sheet materials such as aluminum alloy AA300X and cold-rolled steel sheet such as JIS-G-3141 are used for the container for the lithium-ion secondary batteries. In this study, a multi-stage deep drawing process is used to produce a rectangular cup from thin stainless steel sheet material, SUS409L, with an initial blank thickness of 0.4mm for the battery container application. Numerical simulations of the first through the fifth stages for the multi-stage deep drawing with thin SUS409L sheet were conducted using LS-Dyna3D Implicit/Explicit. Special consideration was given to the deformation characteristics due to the normal anisotropy of the sheet material. The numerical simulations were conducted with both isotropic properties and the anisotropic properties of the initial blank material. An unexpected forming failure, barreling in the bottom region of the deep drawn rectangular cup, was observed. This failure mode can be avoided by additional ironing thickness control during the process.

판재성형의 유한요소해석

  • 강정진;오수익;정영철;박종진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.38-47
    • /
    • 2000
  • Recently, finite element method has been used as an effective tool in the design process of sheet metal forming. In the present study, an implicit method and an explicit method have been developed for 2D analysis and 3D analysis, respectively, and applied to several processes including plane strain draw bending and TWB sqaure cup drawing. Also, commercial codes are used for geometrically complex problems, such as tube hydroforming, "L" cup deep drawing and side frame forming. In this paper, basic formulations used in the methods are introduced and results obtained from the applications are discussed.discussed.

  • PDF

Numerical Study of Square Cup Deep Drawing Accounting for Biaxial Tensile Property (판재의 이축인장 특성을 고려한 사각컵 딥드로잉 성형해석)

  • Ahn, D.C.;Kim, K.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.213-214
    • /
    • 2009
  • Recently the use of ferritic stainless steels for automotive exhaust system has been increased dramatically. A detailed knowledge of material behavior of ferritic stainless steel is important for successful manufacturing of exhaust systems. To achieve this goal, numerical study of square cup deep drawing for ferritic stainless steel sheet, type 409L was conducted with Yld2000-24. Uniaxial tensile test and hydraulic bulge test were performed to characterize plastic material behavior. Finite element simulation of square cup deep drawing was performed successfully.

  • PDF

A Study of Cup forming by double Stretch-Drawing Process (원통의 2단 인장드로잉 성형에 관한 연구)

  • 김영수;정태훈;일본명
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.406-411
    • /
    • 2003
  • It is clearly demonstrated that deeper cups could be formed by single and double stretch-drawings from smaller circular blanks due to such wall-thinning action than in the usual deep-drawing of larger blanks. From this fact, it is emphasized that the deep-drawability of a sheet metal Is not evaluated simply by the conventional L.D.R (limiting drawing ratio), but the depth of the drawn cup should also be taken into account. Many experimental data about various metals and thicknesses given in this paper offer a valuable information in this process for more general use which recommends to replace the conventional deep-drawing process by the stretch-drawing process both for single and double operations. In the single stretch-drawing, it is also confirmed that a deeper cup can be produced by raising the blank-holding force at later stage of operation.

  • PDF

Evaluation of Formability Sensitivity to Die Design in Warm Square Cup Deep Drawing of AZ31 Sheet (AZ3l 판재의 온간 사각컵 디프드로잉에서 금형 설계에 대한 성형성 민감도의 평가)

  • Kim, G.D.;Kim, H.K.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.120-125
    • /
    • 2007
  • Magnesium alloy has low formability at room temperature and therefore, in many cases, forming at elevated temperatures is necessary to obtain the required material flow without failure. Tn the present study, square cup deep drawing tests using the magnesium alloy AE31 sheet were experimentally conducted using the porches and dies with different edge radius to evaluate the formability sensitivity to the die design variables. The experimental results showed that the fracture position over the cup wall moved from the punch nose to the flange as the die temperature increased, and that the drawing depth change was more affected by the punch radius than the die radius.

A Experimental Study of Cup forming by Stretch-Drawing Process (인장드로잉법에 의한 원통성형에 관한 실험적 연구)

  • 김영수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.123-128
    • /
    • 2000
  • Fundamental and informative data of axi-symmetric stretch-drawing of several sheetmetals with thicknesses of 0.7-1.0mm are presented both for single and double operations. Very small radius is applied to the die profile (or-shoulder) ion all operations. to induce wall-thinning by the effect of bending-under-tension from which the name 'stretch-drawing' comes. It is clearly demonstrated that deeper cups could be formed by single and double stretch-drawings from smaller circular blanks due to such wall-thinning action than in the usual deep-drawing of larger blanks, From this fact it is emphasized that the deep-drawability of a sheet metal is not evaluated simply by the conventional L.D.R (limiting drawing ratio) but the depth of the drawn cup should also be taken into account./ Many experimental data about various metals and thicknesses given in this paper offer a valuable information in this process for more general use which recommends to replace the conventional deep-drawing process by the stretch-drawing process both for single and double operations. In the single stretch-drawing it is also confirmed that a deeper cup can be produced by raising the blank-holding force at later stage of operation.

  • PDF

Formability of deep drawing process for L-shape cross section (L형 단면 딥드로잉 가공에서의 성형성)

  • 김상진;양대호;서대교
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.16-22
    • /
    • 1996
  • Two kinds of blank shapes, optimum and square, are adopted to investigate formbility. Optimum blank shape is determined to construct an L-shape cup with uniform height and without flange part. For this purpose , rigid-plastic FEM analysis is applied with backward tracing technique. Maximum cup detph and strain distribution are measured experimetally for the products of the two kinds of blank shapes, which are optimum and square.It is confirmed that deeper cup without severe thickness reduction can be obtained fro the optimum shape.

  • PDF

Experimental Study on the Deep Drawing Process for L-shape Cross Section (L형 단면의 ?드로잉 가공에 대한 실험적 연구)

  • 김상진;양대호;서대교
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.281-287
    • /
    • 1996
  • Two kinds of blank shapes optimum and square are adopted to investigate formability. Optimum blank shape is determined to construct an L-shape cup with uniform height and without flange part. For this purpose rigid-plastic FEM analysis is applied with backward tracing technique. Maximum cup depth and strain distribution are measured experimentally for the products of the two kinds of blank shapes which are optimum and square. it is confirmed that deeper cup without severe thickness reduction can be obtained from the optimum shape.

  • PDF

A General Tool Surface Contact Search and its Application to 3-D Deep drawing Process (일반적인 금형면에서의 접촉탐색과 3차원 디프드로잉 성형에의 응용)

  • 서의권;심현보
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.416-424
    • /
    • 1997
  • In the present study, a contact search and check algorithm for general tool surface described by triangular FE patch is proposed. To improve numerical stability, SEAM element using the linear Coons interpolation has been used. To check the proposed algorithm, both clover cup and L-shape cup deep drawing processes are calculated. The computed results shows that the proposed contact algorithm can be successfully applied for sheet metal forming processes with general shaped tools.

  • PDF

A Study on the Behavior of Wrinkles in Cup Drawing with Al alloy by FEM (유한요소법에 의한 합금의 용기 성형시 Al 주름의 거동에 관한 연구)

  • Ko D.L.;Jeon C.Y.;Kim J.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1240-1243
    • /
    • 2005
  • The wrinkling in the flange and wall of a part is a predominant failure mode in stamping of sheet metal parts. In many cases this wrinkling may be eliminated by appropriate control of the blank holding force(BHF), but BHF affects the draw depth. Gotoh had studied the wrinkles under $20{\mu}$ in height. In general, the height of wrinkles could be limited under $200{\mu}$ practically. Therefore small BHF can be allowed so that the depth of drawing could be increased. This paper represents the variation of the wrinkles of flange in the part of cup drawing by using aluminium alloy A1050 and A5052. This simulation is used by the explicit finite elements code $PAM-STAMP^{TM}$. The computed results are compared with the experimental results to show the validity of the analysis.

  • PDF